aboutsummaryrefslogtreecommitdiffhomepage
path: root/tools/colorspaceinfo.cpp
blob: 30880b9b254fc86a999804f4482aee465c5e6cd1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/*
 * Copyright 2016 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "Resources.h"

#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkCodec.h"
#include "SkColorSpace_A2B.h"
#include "SkColorSpace_XYZ.h"
#include "SkColorSpacePriv.h"
#include "SkCommandLineFlags.h"
#include "SkImageEncoder.h"
#include "SkMatrix44.h"
#include "SkOSFile.h"

#include "sk_tool_utils.h"

DEFINE_string(input, "input.png", "A path to the input image or icc profile.");
DEFINE_string(gamut_output, "gamut_output.png", "A path to the output gamut image.");
DEFINE_string(gamma_output, "gamma_output.png", "A path to the output gamma image.");
DEFINE_bool(sRGB_gamut, false, "Draws the sRGB gamut on the gamut visualization.");
DEFINE_bool(adobeRGB, false, "Draws the Adobe RGB gamut on the gamut visualization.");
DEFINE_bool(sRGB_gamma, false, "Draws the sRGB gamma on all gamma output images.");
DEFINE_string(uncorrected, "", "A path to reencode the uncorrected input image.");

static const char* kRGBChannelNames[3] = {
    "Red  ", "Green", "Blue "
};

static const SkColor kRGBChannelColors[3] = {
    SkColorSetARGB(164, 255, 32, 32),
    SkColorSetARGB(164, 32, 255, 32),
    SkColorSetARGB(164, 32, 32, 255)
};

static void dump_transfer_fn(SkGammaNamed gammaNamed) {
    switch (gammaNamed) {
        case kSRGB_SkGammaNamed:
            SkDebugf("Transfer Function: sRGB\n");
            return;
        case k2Dot2Curve_SkGammaNamed:
            SkDebugf("Exponential Transfer Function: Exponent 2.2\n");
            return;
        case kLinear_SkGammaNamed:
            SkDebugf("Transfer Function: Linear\n");
            return;
        default:
            break;
    }

}

static void dump_transfer_fn(const SkGammas& gammas) {
    SkASSERT(gammas.channels() == 3);
    for (int i = 0; i < gammas.channels(); i++) {
        if (gammas.isNamed(i)) {
            switch (gammas.data(i).fNamed) {
                case kSRGB_SkGammaNamed:
                    SkDebugf("%s Transfer Function: sRGB\n", kRGBChannelNames[i]);
                    return;
                case k2Dot2Curve_SkGammaNamed:
                    SkDebugf("%s Transfer Function: Exponent 2.2\n", kRGBChannelNames[i]);
                    return;
                case kLinear_SkGammaNamed:
                    SkDebugf("%s Transfer Function: Linear\n", kRGBChannelNames[i]);
                    return;
                default:
                    SkASSERT(false);
                    continue;
            }
        } else if (gammas.isValue(i)) {
            SkDebugf("%s Transfer Function: Exponent %.3f\n", kRGBChannelNames[i],
                     gammas.data(i).fValue);
        } else if (gammas.isParametric(i)) {
            const SkColorSpaceTransferFn& fn = gammas.data(i).params(&gammas);
            SkDebugf("%s Transfer Function: Parametric A = %.3f, B = %.3f, C = %.3f, D = %.3f, "
                     "E = %.3f, F = %.3f, G = %.3f\n", kRGBChannelNames[i], fn.fA, fn.fB, fn.fC,
                     fn.fD, fn.fE, fn.fF, fn.fG);
        } else {
            SkASSERT(gammas.isTable(i));
            SkDebugf("%s Transfer Function: Table (%d entries)\n", kRGBChannelNames[i],
                    gammas.data(i).fTable.fSize);
        }
    }
}

static inline float parametric(const SkColorSpaceTransferFn& fn, float x) {
    return x >= fn.fD ? powf(fn.fA*x + fn.fB, fn.fG) + fn.fE
                      : fn.fC*x + fn.fF;
}

static void draw_transfer_fn(SkCanvas* canvas, SkGammaNamed gammaNamed, const SkGammas* gammas,
                             SkColor color, int col) {
    SkColorSpaceTransferFn fn[4];
    struct TableInfo {
        const float* fTable;
        int          fSize;
    };
    TableInfo table[4];
    bool isTable[4] = {false, false, false, false};
    const int channels = gammas ? gammas->channels() : 1;
    SkASSERT(channels <= 4);
    if (kNonStandard_SkGammaNamed != gammaNamed) {
        dump_transfer_fn(gammaNamed);
        for (int i = 0; i < channels; ++i) {
            named_to_parametric(&fn[i], gammaNamed);
        }
    } else {
        SkASSERT(gammas);
        dump_transfer_fn(*gammas);
        for (int i = 0; i < channels; ++i) {
            if (gammas->isTable(i)) {
                table[i].fTable = gammas->table(i);
                table[i].fSize = gammas->data(i).fTable.fSize;
                isTable[i] = true;
            } else {
                switch (gammas->type(i)) {
                    case SkGammas::Type::kNamed_Type:
                        named_to_parametric(&fn[i], gammas->data(i).fNamed);
                        break;
                    case SkGammas::Type::kValue_Type:
                        value_to_parametric(&fn[i], gammas->data(i).fValue);
                        break;
                    case SkGammas::Type::kParam_Type:
                        fn[i] = gammas->params(i);
                        break;
                    default:
                        SkASSERT(false);
                }
            }
        }
    }
    SkPaint paint;
    paint.setStyle(SkPaint::kStroke_Style);
    paint.setColor(color);
    paint.setStrokeWidth(2.0f);
    // note: gamma has positive values going up in this image so this origin is
    //       the bottom left and we must subtract y instead of adding.
    const float gap         = 16.0f;
    const float cellWidth   = 500.0f;
    const float cellHeight  = 500.0f;
    const float gammaWidth  = cellWidth - 2 * gap;
    const float gammaHeight = cellHeight - 2 * gap;
    // gamma origin point
    const float ox = gap + cellWidth * col;
    const float oy = gap + gammaHeight;
    for (int i = 0; i < channels; ++i) {
        if (kNonStandard_SkGammaNamed == gammaNamed) {
            paint.setColor(kRGBChannelColors[i]);
        } else {
            paint.setColor(color);
        }
        if (isTable[i]) {
            auto tx = [&table,i](int index) {
                return index / (table[i].fSize - 1.0f);
            };
            for (int ti = 1; ti < table[i].fSize; ++ti) {
                canvas->drawLine(ox + gammaWidth * tx(ti - 1),
                                 oy - gammaHeight * table[i].fTable[ti - 1],
                                 ox + gammaWidth * tx(ti),
                                 oy - gammaHeight * table[i].fTable[ti],
                                 paint);
            }
        } else {
            const float step = 0.01f;
            float yPrev = parametric(fn[i], 0.0f);
            for (float x = step; x <= 1.0f; x += step) {
                const float y = parametric(fn[i], x);
                canvas->drawLine(ox + gammaWidth * (x - step), oy - gammaHeight * yPrev,
                                 ox + gammaWidth * x, oy - gammaHeight * y,
                                 paint);
                yPrev = y;
            }
        }
    }
    paint.setColor(0xFF000000);
    paint.setStrokeWidth(3.0f);
    canvas->drawRect({ ox, oy - gammaHeight, ox + gammaWidth, oy }, paint);
}

/**
 *  Loads the triangular gamut as a set of three points.
 */
static void load_gamut(SkPoint rgb[], const SkMatrix44& xyz) {
    // rx = rX / (rX + rY + rZ)
    // ry = rX / (rX + rY + rZ)
    // gx, gy, bx, and gy are calulcated similarly.
    float rSum = xyz.get(0, 0) + xyz.get(1, 0) + xyz.get(2, 0);
    float gSum = xyz.get(0, 1) + xyz.get(1, 1) + xyz.get(2, 1);
    float bSum = xyz.get(0, 2) + xyz.get(1, 2) + xyz.get(2, 2);
    rgb[0].fX = xyz.get(0, 0) / rSum;
    rgb[0].fY = xyz.get(1, 0) / rSum;
    rgb[1].fX = xyz.get(0, 1) / gSum;
    rgb[1].fY = xyz.get(1, 1) / gSum;
    rgb[2].fX = xyz.get(0, 2) / bSum;
    rgb[2].fY = xyz.get(1, 2) / bSum;
}

/**
 *  Calculates the area of the triangular gamut.
 */
static float calculate_area(SkPoint abc[]) {
    SkPoint a = abc[0];
    SkPoint b = abc[1];
    SkPoint c = abc[2];
    return 0.5f * SkTAbs(a.fX*b.fY + b.fX*c.fY - a.fX*c.fY - c.fX*b.fY - b.fX*a.fY);
}

static void draw_gamut(SkCanvas* canvas, const SkMatrix44& xyz, const char* name, SkColor color,
                       bool label) {
    // Report the XYZ values.
    SkDebugf("%s\n", name);
    SkDebugf("       R     G     B\n");
    SkDebugf("X  %.3f %.3f %.3f\n", xyz.get(0, 0), xyz.get(0, 1), xyz.get(0, 2));
    SkDebugf("Y  %.3f %.3f %.3f\n", xyz.get(1, 0), xyz.get(1, 1), xyz.get(1, 2));
    SkDebugf("Z  %.3f %.3f %.3f\n", xyz.get(2, 0), xyz.get(2, 1), xyz.get(2, 2));

    // Calculate the points in the gamut from the XYZ values.
    SkPoint rgb[4];
    load_gamut(rgb, xyz);

    // Report the area of the gamut.
    SkDebugf("Area of Gamut: %.3f\n\n", calculate_area(rgb));

    // Magic constants that help us place the gamut triangles in the appropriate position
    // on the canvas.
    const float xScale = 2071.25f;  // Num pixels from 0 to 1 in x
    const float xOffset = 241.0f;   // Num pixels until start of x-axis
    const float yScale = 2067.78f;  // Num pixels from 0 to 1 in y
    const float yOffset = -144.78f; // Num pixels until start of y-axis
                                    // (negative because y extends beyond image bounds)

    // Now transform the points so they can be drawn on our canvas.
    // Note that y increases as we move down the canvas.
    rgb[0].fX = xOffset + xScale * rgb[0].fX;
    rgb[0].fY = yOffset + yScale * (1.0f - rgb[0].fY);
    rgb[1].fX = xOffset + xScale * rgb[1].fX;
    rgb[1].fY = yOffset + yScale * (1.0f - rgb[1].fY);
    rgb[2].fX = xOffset + xScale * rgb[2].fX;
    rgb[2].fY = yOffset + yScale * (1.0f - rgb[2].fY);

    // Repeat the first point to connect the polygon.
    rgb[3] = rgb[0];
    SkPaint paint;
    paint.setColor(color);
    paint.setStrokeWidth(6.0f);
    paint.setTextSize(75.0f);
    canvas->drawPoints(SkCanvas::kPolygon_PointMode, 4, rgb, paint);
    if (label) {
        canvas->drawText("R", 1, rgb[0].fX + 5.0f, rgb[0].fY + 75.0f, paint);
        canvas->drawText("G", 1, rgb[1].fX + 5.0f, rgb[1].fY - 5.0f, paint);
        canvas->drawText("B", 1, rgb[2].fX - 75.0f, rgb[2].fY - 5.0f, paint);
    }
}

int main(int argc, char** argv) {
    SkCommandLineFlags::SetUsage(
            "Usage: colorspaceinfo --input <path to input image or icc profile> "
                                  "--gamma_output <path to output gamma image> "
                                  "--gamut_output <path to output gamut image>"
                                  "--sRGB <draw canonical sRGB gamut> "
                                  "--adobeRGB <draw canonical Adobe RGB gamut> "
                                  "--uncorrected <path to reencoded, uncorrected input image>\n"
            "Description: Writes visualizations of the color space to the output image(s)  ."
                         "Also, if a path is provided, writes uncorrected bytes to an unmarked "
                         "png, for comparison with the input image.\n");
    SkCommandLineFlags::Parse(argc, argv);
    const char* input = FLAGS_input[0];
    const char* gamut_output = FLAGS_gamut_output[0];
    const char* gamma_output = FLAGS_gamma_output[0];
    if (!input || !gamut_output || !gamma_output) {
        SkCommandLineFlags::PrintUsage();
        return -1;
    }

    sk_sp<SkData> data(SkData::MakeFromFileName(input));
    if (!data) {
        SkDebugf("Cannot find input image.\n");
        return -1;
    }
    std::unique_ptr<SkCodec> codec(SkCodec::NewFromData(data));
    sk_sp<SkColorSpace> colorSpace = nullptr;
    const bool isImage = (codec != nullptr);
    if (isImage) {
        colorSpace = sk_ref_sp(codec->getInfo().colorSpace());
    } else {
        colorSpace = SkColorSpace::MakeICC(data->bytes(), data->size());
    }

    if (!colorSpace) {
        SkDebugf("Cannot create codec or icc profile from input file.\n");
        return -1;
    }

    // Load a graph of the CIE XYZ color gamut.
    SkBitmap gamutCanvasBitmap;
    if (!GetResourceAsBitmap("gamut.png", &gamutCanvasBitmap)) {
        SkDebugf("Program failure.\n");
        return -1;
    }
    SkCanvas gamutCanvas(gamutCanvasBitmap);

    SkBitmap gammaCanvasBitmap;
    gammaCanvasBitmap.allocN32Pixels(500, 500);
    SkCanvas gammaCanvas(gammaCanvasBitmap);

    // Draw the sRGB gamut if requested.
    if (FLAGS_sRGB_gamut) {
        sk_sp<SkColorSpace> sRGBSpace = SkColorSpace::MakeSRGB();
        const SkMatrix44* mat = as_CSB(sRGBSpace)->toXYZD50();
        SkASSERT(mat);
        draw_gamut(&gamutCanvas, *mat, "sRGB", 0xFFFF9394, false);
    }

    // Draw the Adobe RGB gamut if requested.
    if (FLAGS_adobeRGB) {
        sk_sp<SkColorSpace> adobeRGBSpace =
                SkColorSpace_Base::MakeNamed(SkColorSpace_Base::kAdobeRGB_Named);
        const SkMatrix44* mat = as_CSB(adobeRGBSpace)->toXYZD50();
        SkASSERT(mat);
        draw_gamut(&gamutCanvas, *mat, "Adobe RGB", 0xFF31a9e1, false);
    }

    int gammaCol = 0;
    if (SkColorSpace_Base::Type::kXYZ == as_CSB(colorSpace)->type()) {
        const SkMatrix44* mat = as_CSB(colorSpace)->toXYZD50();
        SkASSERT(mat);
        auto xyz = static_cast<SkColorSpace_XYZ*>(colorSpace.get());
        draw_gamut(&gamutCanvas, *mat, input, 0xFF000000, true);
        if (FLAGS_sRGB_gamma) {
            draw_transfer_fn(&gammaCanvas, kSRGB_SkGammaNamed, nullptr, 0xFFFF9394, gammaCol);
        }
        draw_transfer_fn(&gammaCanvas, xyz->gammaNamed(), xyz->gammas(), 0xFF000000, gammaCol++);
    } else {
        SkDebugf("Color space is defined using an A2B tag.  It cannot be represented by "
                 "a transfer function and to D50 matrix.\n");
        return -1;
    }

    // marker to tell the web-tool the names of all images output
    SkDebugf("=========\n");
    auto saveCanvasBitmap = [](const SkBitmap& bitmap, const char *fname) {
        // Finally, encode the result to the output file.
        sk_sp<SkData> out = sk_tool_utils::EncodeImageToData(bitmap, SkEncodedImageFormat::kPNG,
                                                             100);
        if (!out) {
            SkDebugf("Failed to encode %s output.\n", fname);
            return false;
        }
        SkFILEWStream stream(fname);
        if (!stream.write(out->data(), out->size())) {
            SkDebugf("Failed to write %s output.\n", fname);
            return false;
        }
        // record name of canvas
        SkDebugf("%s\n", fname);
        return true;
    };

    // only XYZ images have a gamut visualization since the matrix in A2B is not
    // a gamut adjustment from RGB->XYZ always (or ever)
    if (SkColorSpace_Base::Type::kXYZ == as_CSB(colorSpace)->type() &&
        !saveCanvasBitmap(gamutCanvasBitmap, gamut_output)) {
        return -1;
    }
    if (gammaCol > 0 && !saveCanvasBitmap(gammaCanvasBitmap, gamma_output)) {
        return -1;
    }

    if (isImage) {
        SkDebugf("%s\n", input);
    }
    // Also, if requested, decode and reencode the uncorrected input image.
    if (!FLAGS_uncorrected.isEmpty() && isImage) {
        SkBitmap bitmap;
        int width = codec->getInfo().width();
        int height = codec->getInfo().height();
        bitmap.allocN32Pixels(width, height, kOpaque_SkAlphaType == codec->getInfo().alphaType());
        SkImageInfo decodeInfo = SkImageInfo::MakeN32(width, height, kUnpremul_SkAlphaType);
        if (SkCodec::kSuccess != codec->getPixels(decodeInfo, bitmap.getPixels(),
                                                  bitmap.rowBytes())) {
            SkDebugf("Could not decode input image.\n");
            return -1;
        }
        sk_sp<SkData> out = sk_tool_utils::EncodeImageToData(bitmap, SkEncodedImageFormat::kPNG,
                                                             100);
        if (!out) {
            SkDebugf("Failed to encode uncorrected image.\n");
            return -1;
        }
        SkFILEWStream bitmapStream(FLAGS_uncorrected[0]);
        if (!bitmapStream.write(out->data(), out->size())) {
            SkDebugf("Failed to write uncorrected image output.\n");
            return -1;
        }
        SkDebugf("%s\n", FLAGS_uncorrected[0]);
    }

    return 0;
}