aboutsummaryrefslogtreecommitdiffhomepage
path: root/tools/VisualBench.cpp
blob: cbc89945924833633aa57c17200029c15fa06f91 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 *
 */

#include "VisualBench.h"

#include "ProcStats.h"
#include "SkApplication.h"
#include "SkCanvas.h"
#include "SkCommandLineFlags.h"
#include "SkCommonFlags.h"
#include "SkForceLinking.h"
#include "SkGraphics.h"
#include "SkGr.h"
#include "SkImageDecoder.h"
#include "SkOSFile.h"
#include "SkStream.h"
#include "Stats.h"
#include "gl/GrGLInterface.h"

__SK_FORCE_IMAGE_DECODER_LINKING;

// Between samples we reset context
// Between frames we swap buffers
// Between flushes we call flush on GrContext

DEFINE_int32(gpuFrameLag, 5, "Overestimate of maximum number of frames GPU allows to lag.");
DEFINE_int32(samples, 10, "Number of times to time each skp.");
DEFINE_int32(frames, 5, "Number of frames of each skp to render per sample.");
DEFINE_double(flushMs, 20, "Target flush time in millseconds.");
DEFINE_double(loopMs, 5, "Target loop time in millseconds.");
DEFINE_int32(msaa, 0, "Number of msaa samples.");
DEFINE_bool2(fullscreen, f, true, "Run fullscreen.");

static SkString humanize(double ms) {
    if (FLAGS_verbose) {
        return SkStringPrintf("%llu", (uint64_t)(ms*1e6));
    }
    return HumanizeMs(ms);
}

#define HUMANIZE(time) humanize(time).c_str()

VisualBench::VisualBench(void* hwnd, int argc, char** argv)
    : INHERITED(hwnd)
    , fCurrentPictureIdx(-1)
    , fCurrentSample(0)
    , fCurrentFrame(0)
    , fFlushes(1)
    , fLoops(1)
    , fState(kPreWarmLoops_State) {
    SkCommandLineFlags::Parse(argc, argv);

    // read all the skp file names.
    for (int i = 0; i < FLAGS_skps.count(); i++) {
        if (SkStrEndsWith(FLAGS_skps[i], ".skp")) {
            fRecords.push_back().fFilename = FLAGS_skps[i];
        } else {
            SkOSFile::Iter it(FLAGS_skps[i], ".skp");
            SkString path;
            while (it.next(&path)) {
                fRecords.push_back().fFilename = SkOSPath::Join(FLAGS_skps[i], path.c_str());;
            }
        }
    }

    if (fRecords.empty()) {
        SkDebugf("no valid skps found\n");
    }

    this->setTitle();
    this->setupBackend();

    // Print header
    SkDebugf("curr/maxrss\tloops\tflushes\tmin\tmedian\tmean\tmax\tstddev\tbench\n");
}

VisualBench::~VisualBench() {
    INHERITED::detach();
}

void VisualBench::setTitle() {
    SkString title("VisualBench");
    INHERITED::setTitle(title.c_str());
}

SkSurface* VisualBench::createSurface() {
    SkSurfaceProps props(INHERITED::getSurfaceProps());
    return SkSurface::NewRenderTargetDirect(fRenderTarget, &props);
}

bool VisualBench::setupBackend() {
    this->setColorType(kRGBA_8888_SkColorType);
    this->setVisibleP(true);
    this->setClipToBounds(false);

    if (FLAGS_fullscreen) {
        if (!this->makeFullscreen()) {
            SkDebugf("Could not go fullscreen!");
        }
    }
    if (!this->attach(kNativeGL_BackEndType, FLAGS_msaa, &fAttachmentInfo)) {
        SkDebugf("Not possible to create backend.\n");
        INHERITED::detach();
        return false;
    }

    this->setVsync(false);
    this->resetContext();
    return true;
}

void VisualBench::resetContext() {
    fInterface.reset(GrGLCreateNativeInterface());
    SkASSERT(fInterface);

    // setup contexts
    fContext.reset(GrContext::Create(kOpenGL_GrBackend, (GrBackendContext)fInterface.get()));
    SkASSERT(fContext);

    // setup rendertargets
    this->setupRenderTarget();
}

void VisualBench::setupRenderTarget() {
    if (fContext) {
        fRenderTarget.reset(this->renderTarget(fAttachmentInfo, fInterface, fContext));
    }
}

inline void VisualBench::renderFrame(SkCanvas* canvas) {
    for (int flush = 0; flush < fFlushes; flush++) {
        for (int loop = 0; loop < fLoops; loop++) {
            canvas->drawPicture(fPicture);
        }
        canvas->flush();
    }
    INHERITED::present();
}

void VisualBench::printStats() {
    const SkTArray<double>& measurements = fRecords[fCurrentPictureIdx].fMeasurements;
    SkString shortName = SkOSPath::Basename(fRecords[fCurrentPictureIdx].fFilename.c_str());
    if (FLAGS_verbose) {
        for (int i = 0; i < measurements.count(); i++) {
            SkDebugf("%s  ", HUMANIZE(measurements[i]));
        }
        SkDebugf("%s\n", shortName.c_str());
    } else {
        SkASSERT(measurements.count());
        Stats stats(measurements.begin(), measurements.count());
        const double stdDevPercent = 100 * sqrt(stats.var) / stats.mean;
        SkDebugf("%4d/%-4dMB\t%d\t%d\t%s\t%s\t%s\t%s\t%.0f%%\t%s\n",
                 sk_tools::getCurrResidentSetSizeMB(),
                 sk_tools::getMaxResidentSetSizeMB(),
                 fLoops,
                 fFlushes,
                 HUMANIZE(stats.min),
                 HUMANIZE(stats.median),
                 HUMANIZE(stats.mean),
                 HUMANIZE(stats.max),
                 stdDevPercent,
                 shortName.c_str());
    }
}

bool VisualBench::advanceRecordIfNecessary() {
    if (fPicture) {
        return true;
    }
    ++fCurrentPictureIdx;
    while (true) {
        if (fCurrentPictureIdx >= fRecords.count()) {
            return false;
        }
        if (this->loadPicture()) {
            return true;
        }
        fRecords.removeShuffle(fCurrentPictureIdx);
    }
}

bool VisualBench::loadPicture() {
    const char* fileName = fRecords[fCurrentPictureIdx].fFilename.c_str();
    SkFILEStream stream(fileName);
    if (stream.isValid()) {
        fPicture.reset(SkPicture::CreateFromStream(&stream));
        if (SkToBool(fPicture)) {
            return true;
        }
    }
    SkDebugf("couldn't load picture at \"%s\"\n", fileName);
    return false;
}

void VisualBench::preWarm(State nextState) {
    if (fCurrentFrame >= FLAGS_gpuFrameLag) {
        // we currently time across all frames to make sure we capture all GPU work
        fState = nextState;
        fCurrentFrame = 0;
        fTimer.start();
    } else {
        fCurrentFrame++;
    }
}

void VisualBench::draw(SkCanvas* canvas) {
    if (!this->advanceRecordIfNecessary()) {
        this->closeWindow();
        return;
    }
    this->renderFrame(canvas);
    switch (fState) {
        case kPreWarmLoops_State: {
            this->preWarm(kTuneLoops_State);
            break;
        }
        case kTuneLoops_State: {
            if (1 << 30 == fLoops) {
                // We're about to wrap.  Something's wrong with the bench.
                SkDebugf("InnerLoops wrapped\n");
                fLoops = 0;
            } else {
                fTimer.end();
                double elapsed = fTimer.fWall;
                if (elapsed > FLAGS_loopMs) {
                    fState = kPreWarmTiming_State;

                    // Scale back the number of loops
                    fLoops = (int)ceil(fLoops * FLAGS_loopMs / elapsed);
                    fFlushes = (int)ceil(FLAGS_flushMs / elapsed);
                } else {
                    fState = kPreWarmLoops_State;
                    fLoops *= 2;
                }

                fCurrentFrame = 0;
                fTimer = WallTimer();
                this->resetContext();
            }
            break;
        }
        case kPreWarmTiming_State: {
            this->preWarm(kTiming_State);
            break;
        }
        case kTiming_State: {
            if (fCurrentFrame >= FLAGS_frames) {
                fTimer.end();
                fRecords[fCurrentPictureIdx].fMeasurements.push_back(
                        fTimer.fWall / (FLAGS_frames * fLoops * fFlushes));
                if (fCurrentSample++ >= FLAGS_samples) {
                    fState = kPreWarmLoops_State;
                    this->printStats();
                    fPicture.reset(NULL);
                    fCurrentSample = 0;
                    fFlushes = 1;
                    fLoops = 1;
                } else {
                    fState = kPreWarmTiming_State;
                }
                fTimer = WallTimer();
                this->resetContext();
                fCurrentFrame = 0;
            } else {
                fCurrentFrame++;
            }
            break;
        }
    }

    // Invalidate the window to force a redraw. Poor man's animation mechanism.
    this->inval(NULL);
}

void VisualBench::onSizeChange() {
    this->setupRenderTarget();
}

bool VisualBench::onHandleChar(SkUnichar unichar) {
    return true;
}

// Externally declared entry points
void application_init() {
    SkGraphics::Init();
    SkEvent::Init();
}

void application_term() {
    SkEvent::Term();
    SkGraphics::Term();
}

SkOSWindow* create_sk_window(void* hwnd, int argc, char** argv) {
    return new VisualBench(hwnd, argc, argv);
}