aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/skcms/src/TransferFunction.c
blob: a27bd13bd2253bd252b89b2ec85fe14a9fb4ab02 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/*
 * Copyright 2018 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "../skcms.h"
#include "Curve.h"
#include "GaussNewton.h"
#include "LinearAlgebra.h"
#include "Macros.h"
#include "PortableMath.h"
#include "TransferFunction.h"
#include <assert.h>
#include <limits.h>
#include <string.h>

float skcms_TransferFunction_eval(const skcms_TransferFunction* tf, float x) {
    float sign = x < 0 ? -1.0f : 1.0f;
    x *= sign;

    return sign * (x < tf->d ? tf->c * x + tf->f
                             : powf_(tf->a * x + tf->b, tf->g) + tf->e);
}

bool skcms_TransferFunction_isValid(const skcms_TransferFunction* tf) {
    // Reject obviously malformed inputs
    if (!isfinitef_(tf->a + tf->b + tf->c + tf->d + tf->e + tf->f + tf->g)) {
        return false;
    }

    // All of these parameters should be non-negative
    if (tf->a < 0 || tf->c < 0 || tf->d < 0 || tf->g < 0) {
        return false;
    }

    return true;
}

// TODO: Adjust logic here? This still assumes that purely linear inputs will have D > 1, which
// we never generate. It also emits inverted linear using the same formulation. Standardize on
// G == 1 here, too?
bool skcms_TransferFunction_invert(const skcms_TransferFunction* src, skcms_TransferFunction* dst) {
    // Original equation is:       y = (ax + b)^g + e   for x >= d
    //                             y = cx + f           otherwise
    //
    // so 1st inverse is:          (y - e)^(1/g) = ax + b
    //                             x = ((y - e)^(1/g) - b) / a
    //
    // which can be re-written as: x = (1/a)(y - e)^(1/g) - b/a
    //                             x = ((1/a)^g)^(1/g) * (y - e)^(1/g) - b/a
    //                             x = ([(1/a)^g]y + [-((1/a)^g)e]) ^ [1/g] + [-b/a]
    //
    // and 2nd inverse is:         x = (y - f) / c
    // which can be re-written as: x = [1/c]y + [-f/c]
    //
    // and now both can be expressed in terms of the same parametric form as the
    // original - parameters are enclosed in square brackets.
    skcms_TransferFunction tf_inv = { 0, 0, 0, 0, 0, 0, 0 };

    // This rejects obviously malformed inputs, as well as decreasing functions
    if (!skcms_TransferFunction_isValid(src)) {
        return false;
    }

    // There are additional constraints to be invertible
    bool has_nonlinear = (src->d <= 1);
    bool has_linear = (src->d > 0);

    // Is the linear section not invertible?
    if (has_linear && src->c == 0) {
        return false;
    }

    // Is the nonlinear section not invertible?
    if (has_nonlinear && (src->a == 0 || src->g == 0)) {
        return false;
    }

    // If both segments are present, they need to line up
    if (has_linear && has_nonlinear) {
        float l_at_d = src->c * src->d + src->f;
        float n_at_d = powf_(src->a * src->d + src->b, src->g) + src->e;
        if (fabsf_(l_at_d - n_at_d) > (1 / 512.0f)) {
            return false;
        }
    }

    // Invert linear segment
    if (has_linear) {
        tf_inv.c = 1.0f / src->c;
        tf_inv.f = -src->f / src->c;
    }

    // Invert nonlinear segment
    if (has_nonlinear) {
        tf_inv.g = 1.0f / src->g;
        tf_inv.a = powf_(1.0f / src->a, src->g);
        tf_inv.b = -tf_inv.a * src->e;
        tf_inv.e = -src->b / src->a;
    }

    if (!has_linear) {
        tf_inv.d = 0;
    } else if (!has_nonlinear) {
        // Any value larger than 1 works
        tf_inv.d = 2.0f;
    } else {
        tf_inv.d = src->c * src->d + src->f;
    }

    *dst = tf_inv;
    return true;
}

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //

// From here below we're approximating an skcms_Curve with an skcms_TransferFunction{g,a,b,c,d,e,f}:
//
//   tf(x) =  cx + f          x < d
//   tf(x) = (ax + b)^g + e   x ≥ d
//
// When fitting, we add the additional constraint that both pieces meet at d:
//
//   cd + f = (ad + b)^g + e
//
// Solving for e and folding it through gives an alternate formulation of the non-linear piece:
//
//   tf(x) =                           cx + f   x < d
//   tf(x) = (ax + b)^g - (ad + b)^g + cd + f   x ≥ d
//
// Our overall strategy is then:
//    For a couple tolerances,
//       - skcms_fit_linear(): fit c,d,f iteratively to as many points as our tolerance allows
//       - invert c,d,f
//       - fit_nonlinear():    fit g,a,b using Gauss-Newton given those inverted c,d,f
//                             (and by constraint, inverted e) to the inverse of the table.
//    Return the parameters with least maximum error.
//
// To run Gauss-Newton to find g,a,b, we'll also need the gradient of the residuals
// of round-trip f_inv(x), the inverse of the non-linear piece of f(x).
//
//    let y = Table(x)
//    r(x) = x - f_inv(y)
//
//    ∂r/∂g = ln(ay + b)*(ay + b)^g
//          - ln(ad + b)*(ad + b)^g
//    ∂r/∂a = yg(ay + b)^(g-1)
//          - dg(ad + b)^(g-1)
//    ∂r/∂b =  g(ay + b)^(g-1)
//          -  g(ad + b)^(g-1)

typedef struct {
    const skcms_Curve*            curve;
    const skcms_TransferFunction* tf;
} rg_nonlinear_arg;

// Return the residual of roundtripping skcms_Curve(x) through f_inv(y) with parameters P,
// and fill out the gradient of the residual into dfdP.
static float rg_nonlinear(float x, const void* ctx, const float P[3], float dfdP[3]) {
    const rg_nonlinear_arg* arg = (const rg_nonlinear_arg*)ctx;

    const float y = skcms_eval_curve(arg->curve, x);

    const skcms_TransferFunction* tf = arg->tf;
    const float g = P[0],  a = P[1],  b = P[2],
                c = tf->c, d = tf->d, f = tf->f;

    const float Y = fmaxf_(a*y + b, 0.0f),
                D =        a*d + b;
    assert (D >= 0);

    // The gradient.
    dfdP[0] = 0.69314718f*log2f_(Y)*powf_(Y, g)
            - 0.69314718f*log2f_(D)*powf_(D, g);
    dfdP[1] = y*g*powf_(Y, g-1)
            - d*g*powf_(D, g-1);
    dfdP[2] =   g*powf_(Y, g-1)
            -   g*powf_(D, g-1);

    // The residual.
    const float f_inv = powf_(Y, g)
                      - powf_(D, g)
                      + c*d + f;
    return x - f_inv;
}

int skcms_fit_linear(const skcms_Curve* curve, int N, float tol, float* c, float* d, float* f) {
    assert(N > 1);
    // We iteratively fit the first points to the TF's linear piece.
    // We want the cx + f line to pass through the first and last points we fit exactly.
    //
    // As we walk along the points we find the minimum and maximum slope of the line before the
    // error would exceed our tolerance.  We stop when the range [slope_min, slope_max] becomes
    // emtpy, when we definitely can't add any more points.
    //
    // Some points' error intervals may intersect the running interval but not lie fully
    // within it.  So we keep track of the last point we saw that is a valid end point candidate,
    // and once the search is done, back up to build the line through *that* point.
    const float dx = 1.0f / (N - 1);

    int lin_points = 1;
    *f = skcms_eval_curve(curve, 0);

    float slope_min = -INFINITY_;
    float slope_max = +INFINITY_;
    for (int i = 1; i < N; ++i) {
        float x = i * dx;
        float y = skcms_eval_curve(curve, x);

        float slope_max_i = (y + tol - *f) / x,
              slope_min_i = (y - tol - *f) / x;
        if (slope_max_i < slope_min || slope_max < slope_min_i) {
            // Slope intervals would no longer overlap.
            break;
        }
        slope_max = fminf_(slope_max, slope_max_i);
        slope_min = fmaxf_(slope_min, slope_min_i);

        float cur_slope = (y - *f) / x;
        if (slope_min <= cur_slope && cur_slope <= slope_max) {
            lin_points = i + 1;
            *c = cur_slope;
        }
    }

    // Set D to the last point that met our tolerance.
    *d = (lin_points - 1) * dx;
    return lin_points;
}

// Fit the points in [L,N) to the non-linear piece of tf, or return false if we can't.
static bool fit_nonlinear(const skcms_Curve* curve, int L, int N, skcms_TransferFunction* tf) {
    float P[3] = { tf->g, tf->a, tf->b };

    // No matter where we start, dx should always represent N even steps from 0 to 1.
    const float dx = 1.0f / (N-1);

    for (int j = 0; j < 3/*TODO: tune*/; j++) {
        // These extra constraints a >= 0 and ad+b >= 0 are not modeled in the optimization.
        // We don't really know how to fix up a if it goes negative.
        if (P[1] < 0) {
            return false;
        }
        // If ad+b goes negative, we feel just barely not uneasy enough to tweak b so ad+b is zero.
        if (P[1] * tf->d + P[2] < 0) {
            P[2] = -P[1] * tf->d;
        }
        assert (P[1] >= 0 &&
                P[1] * tf->d + P[2] >= 0);

        rg_nonlinear_arg arg = { curve, tf};
        if (!skcms_gauss_newton_step(rg_nonlinear, &arg,
                                     P,
                                     L*dx, dx, N-L)) {
            return false;
        }
    }

    // We need to apply our fixups one last time
    if (P[1] < 0) {
        return false;
    }
    if (P[1] * tf->d + P[2] < 0) {
        P[2] = -P[1] * tf->d;
    }

    tf->g = P[0];
    tf->a = P[1];
    tf->b = P[2];
    tf->e =   tf->c*tf->d + tf->f
      - powf_(tf->a*tf->d + tf->b, tf->g);
    return true;
}

bool skcms_ApproximateCurve(const skcms_Curve* curve,
                            skcms_TransferFunction* approx,
                            float* max_error) {
    if (!curve || !approx || !max_error) {
        return false;
    }

    if (curve->table_entries == 0) {
        // No point approximating an skcms_TransferFunction with an skcms_TransferFunction!
        return false;
    }

    if (curve->table_entries == 1 || curve->table_entries > (uint32_t)INT_MAX) {
        // We need at least two points, and must put some reasonable cap on the maximum number.
        return false;
    }

    int N = (int)curve->table_entries;
    const float dx = 1.0f / (N - 1);

    *max_error = INFINITY_;
    const float kTolerances[] = { 1.5f / 65535.0f, 1.0f / 512.0f };
    for (int t = 0; t < ARRAY_COUNT(kTolerances); t++) {
        skcms_TransferFunction tf,
                               tf_inv;
        int L = skcms_fit_linear(curve, N, kTolerances[t], &tf.c, &tf.d, &tf.f);

        if (L == N) {
            // If the entire data set was linear, move the coefficients to the nonlinear portion
            // with G == 1.  This lets use a canonical representation with d == 0.
            tf.g = 1;
            tf.a = tf.c;
            tf.b = tf.f;
            tf.c = tf.d = tf.e = tf.f = 0;
        } else if (L == N - 1) {
            // Degenerate case with only two points in the nonlinear segment. Solve directly.
            tf.g = 1;
            tf.a = (skcms_eval_curve(curve, (N-1)*dx) -
                    skcms_eval_curve(curve, (N-2)*dx))
                 / dx;
            tf.b = skcms_eval_curve(curve, (N-2)*dx)
                 - tf.a * (N-2)*dx;
            tf.e = 0;
        } else {
            // Start by guessing a gamma-only curve through the midpoint.
            int mid = (L + N) / 2;
            float mid_x = mid / (N - 1.0f);
            float mid_y = skcms_eval_curve(curve, mid_x);
            tf.g = log2f_(mid_y) / log2f_(mid_x);;
            tf.a = 1;
            tf.b = 0;
            tf.e =    tf.c*tf.d + tf.f
              - powf_(tf.a*tf.d + tf.b, tf.g);


            if (!skcms_TransferFunction_invert(&tf, &tf_inv) ||
                !fit_nonlinear(curve, L,N, &tf_inv)) {
                continue;
            }

            // We fit tf_inv, so calculate tf to keep in sync.
            if (!skcms_TransferFunction_invert(&tf_inv, &tf)) {
                continue;
            }
        }

        // We find our error by roundtripping the table through tf_inv.
        //
        // (The most likely use case for this approximation is to be inverted and
        // used as the transfer function for a destination color space.)
        //
        // We've kept tf and tf_inv in sync above, but we can't guarantee that tf is
        // invertible, so re-verify that here (and use the new inverse for testing).
        if (!skcms_TransferFunction_invert(&tf, &tf_inv)) {
            continue;
        }

        float err = 0;
        for (int i = 0; i < N; i++) {
            float x = i * dx,
                  y = skcms_eval_curve(curve, x);
            err = fmaxf_(err, fabsf_(x - skcms_TransferFunction_eval(&tf_inv, y)));
        }
        if (*max_error > err) {
            *max_error = err;
            *approx    = tf;
        }
    }
    return isfinitef_(*max_error);
}