aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/skcms/src/PolyTF.c
blob: f74cf5418dd8e7c0c84452863d5124b1d6e183b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/*
 * Copyright 2018 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "../skcms.h"
#include "Curve.h"
#include "GaussNewton.h"
#include "Macros.h"
#include "PortableMath.h"
#include "TransferFunction.h"
#include <limits.h>
#include <stdlib.h>

// f(x) = skcms_PolyTF{A,B,C,D}(x) =
//     Cx                       x < D
//     A(x^3-1) + B(x^2-1) + 1  x ≥ D
//
// We'll fit C and D directly, and then hold them constant
// and fit the other part using Gauss-Newton, subject to
// the constraint that both parts meet at x=D:
//
//     CD = A(D^3-1) + B(D^2-1) + 1
//
// This lets us solve for B, reducing the optimization problem
// for that part down to just a single parameter A:
//
//         CD - A(D^3-1) - 1
//     B = -----------------
//               D^2-1
//
//                    x^2-1
//  f(x) = A(x^3-1) + ----- [CD - A(D^3-1) - 1] + 1
//                    D^2-1
//
//                  (x^2-1) (D^3-1)
//  ∂f/∂A = x^3-1 - ---------------
//                       D^2-1
//
// It's important to evaluate as f(x) as A(x^3-1) + B(x^2-1) + 1
// and not Ax^3 + Bx^2 + (1-A-B) to ensure that f(1.0f) == 1.0f.


static float eval_poly_tf(float A, float B, float C, float D,
                          float x) {
    return x < D ? C*x
                 : A*(x*x*x-1) + B*(x*x-1) + 1;
}

typedef struct {
    const skcms_Curve*  curve;
    const skcms_PolyTF* tf;
} rg_poly_tf_arg;

static float rg_poly_tf(float x, const void* ctx, const float P[3], float dfdP[3]) {
    const rg_poly_tf_arg* arg = (const rg_poly_tf_arg*)ctx;
    const skcms_PolyTF* tf = arg->tf;

    float A = P[0],
          C = tf->C,
          D = tf->D;
    float B = (C*D - A*(D*D*D - 1) - 1) / (D*D - 1);

    dfdP[0] = (x*x*x - 1) - (x*x-1)*(D*D*D-1)/(D*D-1);

    return skcms_eval_curve(arg->curve, x)
         -     eval_poly_tf(A,B,C,D,    x);
}

static bool fit_poly_tf(const skcms_Curve* curve, skcms_PolyTF* tf) {
    if (curve->table_entries > (uint32_t)INT_MAX) {
        return false;
    }

    const int N = curve->table_entries == 0 ? 256
                                            : (int)curve->table_entries;
    const float dx = 1.0f / (N-1);

    // We'll test the quality of our fit by roundtripping through a skcms_TransferFunction,
    // either the inverse of the curve itself if it is parametric, or of its approximation if not.
    skcms_TransferFunction baseline;
    float err;
    if (curve->table_entries == 0) {
        baseline = curve->parametric;
    } else if (!skcms_ApproximateCurve(curve, &baseline, &err)) {
        return false;
    }

    // We'll borrow the linear section from baseline, which is either
    // exactly correct, or already the approximation we'd use anyway.
    tf->C = baseline.c;
    tf->D = baseline.d;
    if (baseline.f != 0) {
        return false;  // Can't fit this (rare) kind of curve here.
    }

    // Detect linear baseline: (ax + b)^g + e --> ax ~~> Cx
    if (baseline.g == 1 && baseline.d == 0) {
        if (baseline.b + baseline.e == 0) {
            tf->A = 0;
            tf->B = 0;
            tf->C = baseline.a;
            tf->D = INFINITY_;   // Always use Cx, never Ax^3+Bx^2+(1-A-B)
            return true;
        } else {
            return false;  // Just like baseline.f != 0 above, can't represent this offset.
        }
    }

    // This case is less likely, but also guards against divide by zero below.
    if (tf->D == 1) {
        tf->A = 0;
        tf->B = 0;
        return true;
    }

    // Number of points already fit in the linear section.
    // If the curve isn't parametric and we approximated instead, this should be exact.
    // const int L = (int)( tf->D/dx + 0.5f ) + 1
    const int L = (int)(tf->D * (N-1) + 0.5f) + 1;

    if (L == N-1) {
        // All points but one fit the linear section.
        // We could connect the last point with a quadratic, but let's just be lazy.
        return false;
    }

    skcms_TransferFunction inv;
    if (!skcms_TransferFunction_invert(&baseline, &inv)) {
        return false;
    }

    // Start with guess A = 0, i.e. f(x) ≈ x^2.
    float P[3] = {0, 0,0};
    for (int i = 0; i < 3; i++) {
        rg_poly_tf_arg arg = { curve, tf };
        if (!skcms_gauss_newton_step(rg_poly_tf, &arg,
                                     P,
                                     L*dx, dx, N-L)) {
            return false;
        }
    }

    float A = tf->A = P[0],
          C = tf->C,
          D = tf->D,
          B = tf->B = (C*D - A*(D*D*D - 1) - 1) / (D*D - 1);

    for (int i = 0; i < N; i++) {
        float x = i * (1.0f/(N-1));

        float rt = skcms_TransferFunction_eval(&inv, eval_poly_tf(A,B,C,D, x))
                 * (N-1) + 0.5f;
        if (!isfinitef_(rt) || rt >= N || rt < 0) {
            return false;
        }

        const int tol = (i == 0 || i == N-1) ? 0
                                             : N/256;
        if (abs(i - (int)rt) > tol) {
            return false;
        }
    }
    return true;
}

void skcms_OptimizeForSpeed(skcms_ICCProfile* profile) {
    for (int i = 0; profile->has_trc && i < 3; i++) {
        if (!profile->has_poly_tf[i]) {
             profile->has_poly_tf[i] = fit_poly_tf(&profile->trc[i], &profile->poly_tf[i]);
        }
    }
}