1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkImageInfoPriv.h"
#include "SkSwizzle.h"
#include "SkSwizzler.h"
#include "Test.h"
#include "SkOpts.h"
// These are the values that we will look for to indicate that the fill was successful
static const uint8_t kFillGray = 0x22;
static const uint16_t kFill565 = 0x3344;
static const uint32_t kFillColor = 0x55667788;
static void check_fill(skiatest::Reporter* r,
const SkImageInfo& imageInfo,
uint32_t startRow,
uint32_t endRow,
size_t rowBytes,
uint32_t offset,
uint32_t colorOrIndex) {
// Calculate the total size of the image in bytes. Use the smallest possible size.
// The offset value tells us to adjust the pointer from the memory we allocate in order
// to test on different memory alignments. If offset is nonzero, we need to increase the
// size of the memory we allocate in order to make sure that we have enough. We are
// still allocating the smallest possible size.
const size_t totalBytes = imageInfo.computeByteSize(rowBytes) + offset;
// Create fake image data where every byte has a value of 0
std::unique_ptr<uint8_t[]> storage(new uint8_t[totalBytes]);
memset(storage.get(), 0, totalBytes);
// Adjust the pointer in order to test on different memory alignments
uint8_t* imageData = storage.get() + offset;
uint8_t* imageStart = imageData + rowBytes * startRow;
const SkImageInfo fillInfo = imageInfo.makeWH(imageInfo.width(), endRow - startRow + 1);
SkSampler::Fill(fillInfo, imageStart, rowBytes, colorOrIndex, SkCodec::kNo_ZeroInitialized);
// Ensure that the pixels are filled properly
// The bots should catch any memory corruption
uint8_t* indexPtr = imageData + startRow * rowBytes;
uint8_t* grayPtr = indexPtr;
uint32_t* colorPtr = (uint32_t*) indexPtr;
uint16_t* color565Ptr = (uint16_t*) indexPtr;
for (uint32_t y = startRow; y <= endRow; y++) {
for (int32_t x = 0; x < imageInfo.width(); x++) {
switch (imageInfo.colorType()) {
case kN32_SkColorType:
REPORTER_ASSERT(r, kFillColor == colorPtr[x]);
break;
case kGray_8_SkColorType:
REPORTER_ASSERT(r, kFillGray == grayPtr[x]);
break;
case kRGB_565_SkColorType:
REPORTER_ASSERT(r, kFill565 == color565Ptr[x]);
break;
default:
REPORTER_ASSERT(r, false);
break;
}
}
indexPtr += rowBytes;
colorPtr = (uint32_t*) indexPtr;
}
}
// Test Fill() with different combinations of dimensions, alignment, and padding
DEF_TEST(SwizzlerFill, r) {
// Test on an invalid width and representative widths
const uint32_t widths[] = { 0, 10, 50 };
// In order to call Fill(), there must be at least one row to fill
// Test on the smallest possible height and representative heights
const uint32_t heights[] = { 1, 5, 10 };
// Test on interesting possibilities for row padding
const uint32_t paddings[] = { 0, 4 };
// Iterate over test dimensions
for (uint32_t width : widths) {
for (uint32_t height : heights) {
// Create image info objects
const SkImageInfo colorInfo = SkImageInfo::MakeN32(width, height, kUnknown_SkAlphaType);
const SkImageInfo grayInfo = colorInfo.makeColorType(kGray_8_SkColorType);
const SkImageInfo color565Info = colorInfo.makeColorType(kRGB_565_SkColorType);
for (uint32_t padding : paddings) {
// Calculate row bytes
const size_t colorRowBytes = SkColorTypeBytesPerPixel(kN32_SkColorType) * width
+ padding;
const size_t indexRowBytes = width + padding;
const size_t grayRowBytes = indexRowBytes;
const size_t color565RowBytes =
SkColorTypeBytesPerPixel(kRGB_565_SkColorType) * width + padding;
// If there is padding, we can invent an offset to change the memory alignment
for (uint32_t offset = 0; offset <= padding; offset += 4) {
// Test all possible start rows with all possible end rows
for (uint32_t startRow = 0; startRow < height; startRow++) {
for (uint32_t endRow = startRow; endRow < height; endRow++) {
// Test fill with each color type
check_fill(r, colorInfo, startRow, endRow, colorRowBytes, offset,
kFillColor);
check_fill(r, grayInfo, startRow, endRow, grayRowBytes, offset,
kFillGray);
check_fill(r, color565Info, startRow, endRow, color565RowBytes, offset,
kFill565);
}
}
}
}
}
}
}
DEF_TEST(SwizzleOpts, r) {
uint32_t dst, src;
// forall c, c*255 == c, c*0 == 0
for (int c = 0; c <= 255; c++) {
src = (255<<24) | c;
SkOpts::RGBA_to_rgbA(&dst, &src, 1);
REPORTER_ASSERT(r, dst == src);
SkOpts::RGBA_to_bgrA(&dst, &src, 1);
REPORTER_ASSERT(r, dst == (uint32_t)((255<<24) | (c<<16)));
src = (0<<24) | c;
SkOpts::RGBA_to_rgbA(&dst, &src, 1);
REPORTER_ASSERT(r, dst == 0);
SkOpts::RGBA_to_bgrA(&dst, &src, 1);
REPORTER_ASSERT(r, dst == 0);
}
// check a totally arbitrary color
src = 0xFACEB004;
SkOpts::RGBA_to_rgbA(&dst, &src, 1);
REPORTER_ASSERT(r, dst == 0xFACAAD04);
// swap red and blue
SkOpts::RGBA_to_BGRA(&dst, &src, 1);
REPORTER_ASSERT(r, dst == 0xFA04B0CE);
// all together now
SkOpts::RGBA_to_bgrA(&dst, &src, 1);
REPORTER_ASSERT(r, dst == 0xFA04ADCA);
}
DEF_TEST(PublicSwizzleOpts, r) {
uint32_t dst, src;
// check a totally arbitrary color
src = 0xFACEB004;
SkSwapRB(&dst, &src, 1);
REPORTER_ASSERT(r, dst == 0xFA04B0CE);
}
|