aboutsummaryrefslogtreecommitdiffhomepage
path: root/tests/SkColor4fTest.cpp
blob: 0cbd5ce4c647bd1a693bf0dab1c2d4c021668b62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/*
 * Copyright 2016 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkBitmapProcShader.h"
#include "SkColor.h"
#include "SkColorMatrixFilter.h"
#include "SkGradientShader.h"
#include "SkImage.h"
#include "SkPM4f.h"
#include "SkShader.h"

#include "Test.h"
#include "SkRandom.h"

const float kTolerance = 1.0f / (1 << 20);

static bool nearly_equal(float a, float b, float tol = kTolerance) {
    SkASSERT(tol >= 0);
    return fabsf(a - b) <= tol;
}

static bool nearly_equal(const SkPM4f a, const SkPM4f& b, float tol = kTolerance) {
    for (int i = 0; i < 4; ++i) {
        if (!nearly_equal(a.fVec[i], b.fVec[i], tol)) {
            return false;
        }
    }
    return true;
}

DEF_TEST(SkColor4f_FromColor, reporter) {
    const struct {
        SkColor     fC;
        SkColor4f   fC4;
    } recs[] = {
        { SK_ColorBLACK, { 0, 0, 0, 1 } },
        { SK_ColorWHITE, { 1, 1, 1, 1 } },
        { SK_ColorRED,   { 1, 0, 0, 1 } },
        { SK_ColorGREEN, { 0, 1, 0, 1 } },
        { SK_ColorBLUE,  { 0, 0, 1, 1 } },
        { 0,             { 0, 0, 0, 0 } },
    };

    for (const auto& r : recs) {
        SkColor4f c4 = SkColor4f::FromColor(r.fC);
        REPORTER_ASSERT(reporter, c4 == r.fC4);
    }
}

DEF_TEST(Color4f_premul, reporter) {
    SkRandom rand;

    for (int i = 0; i < 1000000; ++i) {
        // First just test opaque colors, so that the premul should be exact
        SkColor4f c4 {
            rand.nextUScalar1(), rand.nextUScalar1(), rand.nextUScalar1(), 1
        };
        SkPM4f pm4 = c4.premul();
        REPORTER_ASSERT(reporter, pm4.a() == c4.fA);
        REPORTER_ASSERT(reporter, pm4.r() == c4.fA * c4.fR);
        REPORTER_ASSERT(reporter, pm4.g() == c4.fA * c4.fG);
        REPORTER_ASSERT(reporter, pm4.b() == c4.fA * c4.fB);

        // We compare with a tolerance, in case our premul multiply is implemented at slightly
        // different precision than the test code.
        c4.fA = rand.nextUScalar1();
        pm4 = c4.premul();
        REPORTER_ASSERT(reporter, pm4.fVec[SK_A_INDEX] == c4.fA);
        REPORTER_ASSERT(reporter, nearly_equal(pm4.r(), c4.fA * c4.fR));
        REPORTER_ASSERT(reporter, nearly_equal(pm4.g(), c4.fA * c4.fG));
        REPORTER_ASSERT(reporter, nearly_equal(pm4.b(), c4.fA * c4.fB));
    }
}

//////////////////////////////////////////////////////////////////////////////////////////////////

static sk_sp<SkColorFilter> make_mode_cf() {
    return SkColorFilter::MakeModeFilter(0xFFBB8855, SkXfermode::kPlus_Mode);
}

static sk_sp<SkColorFilter> make_mx_cf() {
    const float mx[] = {
        0.5f, 0,    0, 0, 0.1f,
        0,    0.5f, 0, 0, 0.2f,
        0,    0,    1, 0, -0.1f,
        0,    0,    0, 1, 0,
    };
    return SkColorFilter::MakeMatrixFilterRowMajor255(mx);
}

static sk_sp<SkColorFilter> make_compose_cf() {
    return SkColorFilter::MakeComposeFilter(make_mode_cf(), make_mx_cf());
}

static bool compare_spans(const SkPM4f span4f[], const SkPMColor span4b[], int count,
                          float tolerance = 1.0f/255) {
    for (int i = 0; i < count; ++i) {
        SkPM4f c0 = SkPM4f::FromPMColor(span4b[i]);
        SkPM4f c1 = span4f[i];
        if (!nearly_equal(c0, c1, tolerance)) {
            return false;
        }
    }
    return true;
}

DEF_TEST(Color4f_colorfilter, reporter) {
    struct {
        sk_sp<SkColorFilter>    (*fFact)();
        bool                    fSupports4f;
        const char*             fName;
    } recs[] = {
        { make_mode_cf,     true, "mode" },
        { make_mx_cf,       true, "matrix" },
        { make_compose_cf,  true, "compose" },
    };

    // prepare the src
    const int N = 100;
    SkPMColor src4b[N];
    SkPM4f    src4f[N];
    SkRandom rand;
    for (int i = 0; i < N; ++i) {
        src4b[i] = SkPreMultiplyColor(rand.nextU());
        src4f[i] = SkPM4f::FromPMColor(src4b[i]);
    }
    // confirm that our srcs are (nearly) equal
    REPORTER_ASSERT(reporter, compare_spans(src4f, src4b, N));

    for (const auto& rec : recs) {
        auto filter(rec.fFact());
        SkPMColor dst4b[N];
        filter->filterSpan(src4b, N, dst4b);
        SkPM4f dst4f[N];
        filter->filterSpan4f(src4f, N, dst4f);
        REPORTER_ASSERT(reporter, compare_spans(dst4f, dst4b, N));
    }
}

///////////////////////////////////////////////////////////////////////////////////////////////////

typedef SkPM4f (*SkXfermodeProc4f)(const SkPM4f& src, const SkPM4f& dst);

static bool compare_procs(SkXfermodeProc proc32, SkXfermodeProc4f proc4f) {
    const float kTolerance = 1.0f / 255;

    const SkColor colors[] = {
        0, 0xFF000000, 0xFFFFFFFF, 0x80FF0000
    };

    for (auto s32 : colors) {
        SkPMColor s_pm32 = SkPreMultiplyColor(s32);
        SkPM4f    s_pm4f = SkColor4f::FromColor(s32).premul();
        for (auto d32 : colors) {
            SkPMColor d_pm32 = SkPreMultiplyColor(d32);
            SkPM4f    d_pm4f = SkColor4f::FromColor(d32).premul();

            SkPMColor r32 = proc32(s_pm32, d_pm32);
            SkPM4f    r4f = proc4f(s_pm4f, d_pm4f);

            SkPM4f r32_4f = SkPM4f::FromPMColor(r32);
            if (!nearly_equal(r4f, r32_4f, kTolerance)) {
                return false;
            }
        }
    }
    return true;
}

// Check that our Proc and Proc4f return (nearly) the same results
//
DEF_TEST(Color4f_xfermode_proc4f, reporter) {
    // TODO: extend xfermodes so that all cases can be tested.
    //
    for (int mode = SkXfermode::kClear_Mode; mode <= SkXfermode::kScreen_Mode; ++mode) {
        SkXfermodeProc   proc32 = SkXfermode::GetProc((SkXfermode::Mode)mode);
        SkXfermodeProc4f proc4f = SkXfermode::GetProc4f((SkXfermode::Mode)mode);
        REPORTER_ASSERT(reporter, compare_procs(proc32, proc4f));
    }
}