aboutsummaryrefslogtreecommitdiffhomepage
path: root/tests/SerializationTest.cpp
blob: ee7875a747883436806e728f5a8a675046d47578 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
/*
 * Copyright 2013 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "Test.h"
#include "SkBitmapDevice.h"
#include "SkBitmapSource.h"
#include "SkCanvas.h"
#include "SkMallocPixelRef.h"
#include "SkOrderedWriteBuffer.h"
#include "SkValidatingReadBuffer.h"
#include "SkXfermodeImageFilter.h"

static const uint32_t kArraySize = 64;

template<typename T>
static void TestAlignment(T* testObj, skiatest::Reporter* reporter) {
    // Test memory read/write functions directly
    unsigned char dataWritten[1024];
    size_t bytesWrittenToMemory = testObj->writeToMemory(dataWritten);
    REPORTER_ASSERT(reporter, SkAlign4(bytesWrittenToMemory) == bytesWrittenToMemory);
    size_t bytesReadFromMemory = testObj->readFromMemory(dataWritten, bytesWrittenToMemory);
    REPORTER_ASSERT(reporter, SkAlign4(bytesReadFromMemory) == bytesReadFromMemory);
}

template<typename T> struct SerializationUtils {
    // Generic case for flattenables
    static void Write(SkOrderedWriteBuffer& writer, const T* flattenable) {
        writer.writeFlattenable(flattenable);
    }
    static void Read(SkValidatingReadBuffer& reader, T** flattenable) {
        *flattenable = (T*)reader.readFlattenable(T::GetFlattenableType());
    }
};

template<> struct SerializationUtils<SkMatrix> {
    static void Write(SkOrderedWriteBuffer& writer, const SkMatrix* matrix) {
        writer.writeMatrix(*matrix);
    }
    static void Read(SkValidatingReadBuffer& reader, SkMatrix* matrix) {
        reader.readMatrix(matrix);
    }
};

template<> struct SerializationUtils<SkPath> {
    static void Write(SkOrderedWriteBuffer& writer, const SkPath* path) {
        writer.writePath(*path);
    }
    static void Read(SkValidatingReadBuffer& reader, SkPath* path) {
        reader.readPath(path);
    }
};

template<> struct SerializationUtils<SkRegion> {
    static void Write(SkOrderedWriteBuffer& writer, const SkRegion* region) {
        writer.writeRegion(*region);
    }
    static void Read(SkValidatingReadBuffer& reader, SkRegion* region) {
        reader.readRegion(region);
    }
};

template<> struct SerializationUtils<unsigned char> {
    static void Write(SkOrderedWriteBuffer& writer, unsigned char* data, uint32_t arraySize) {
        writer.writeByteArray(data, arraySize);
    }
    static bool Read(SkValidatingReadBuffer& reader, unsigned char* data, uint32_t arraySize) {
        return reader.readByteArray(data, arraySize);
    }
};

template<> struct SerializationUtils<SkColor> {
    static void Write(SkOrderedWriteBuffer& writer, SkColor* data, uint32_t arraySize) {
        writer.writeColorArray(data, arraySize);
    }
    static bool Read(SkValidatingReadBuffer& reader, SkColor* data, uint32_t arraySize) {
        return reader.readColorArray(data, arraySize);
    }
};

template<> struct SerializationUtils<int32_t> {
    static void Write(SkOrderedWriteBuffer& writer, int32_t* data, uint32_t arraySize) {
        writer.writeIntArray(data, arraySize);
    }
    static bool Read(SkValidatingReadBuffer& reader, int32_t* data, uint32_t arraySize) {
        return reader.readIntArray(data, arraySize);
    }
};

template<> struct SerializationUtils<SkPoint> {
    static void Write(SkOrderedWriteBuffer& writer, SkPoint* data, uint32_t arraySize) {
        writer.writePointArray(data, arraySize);
    }
    static bool Read(SkValidatingReadBuffer& reader, SkPoint* data, uint32_t arraySize) {
        return reader.readPointArray(data, arraySize);
    }
};

template<> struct SerializationUtils<SkScalar> {
    static void Write(SkOrderedWriteBuffer& writer, SkScalar* data, uint32_t arraySize) {
        writer.writeScalarArray(data, arraySize);
    }
    static bool Read(SkValidatingReadBuffer& reader, SkScalar* data, uint32_t arraySize) {
        return reader.readScalarArray(data, arraySize);
    }
};

template<typename T>
static void TestObjectSerialization(T* testObj, skiatest::Reporter* reporter) {
    SkOrderedWriteBuffer writer;
    writer.setFlags(SkOrderedWriteBuffer::kValidation_Flag);
    SerializationUtils<T>::Write(writer, testObj);
    size_t bytesWritten = writer.bytesWritten();
    REPORTER_ASSERT(reporter, SkAlign4(bytesWritten) == bytesWritten);

    unsigned char dataWritten[1024];
    writer.writeToMemory(dataWritten);

    // Make sure this fails when it should (test with smaller size, but still multiple of 4)
    SkValidatingReadBuffer buffer(dataWritten, bytesWritten - 4);
    T obj;
    SerializationUtils<T>::Read(buffer, &obj);
    REPORTER_ASSERT(reporter, !buffer.isValid());

    // Make sure this succeeds when it should
    SkValidatingReadBuffer buffer2(dataWritten, bytesWritten);
    const unsigned char* peekBefore = static_cast<const unsigned char*>(buffer2.skip(0));
    T obj2;
    SerializationUtils<T>::Read(buffer2, &obj2);
    const unsigned char* peekAfter = static_cast<const unsigned char*>(buffer2.skip(0));
    // This should have succeeded, since there are enough bytes to read this
    REPORTER_ASSERT(reporter, buffer2.isValid());
    REPORTER_ASSERT(reporter, static_cast<size_t>(peekAfter - peekBefore) == bytesWritten);

    TestAlignment(testObj, reporter);
}

template<typename T>
static T* TestFlattenableSerialization(T* testObj, bool shouldSucceed,
                                       skiatest::Reporter* reporter) {
    SkOrderedWriteBuffer writer;
    writer.setFlags(SkOrderedWriteBuffer::kValidation_Flag);
    SerializationUtils<T>::Write(writer, testObj);
    size_t bytesWritten = writer.bytesWritten();
    REPORTER_ASSERT(reporter, SkAlign4(bytesWritten) == bytesWritten);

    unsigned char dataWritten[1024];
    SkASSERT(bytesWritten <= sizeof(dataWritten));
    writer.writeToMemory(dataWritten);

    // Make sure this fails when it should (test with smaller size, but still multiple of 4)
    SkValidatingReadBuffer buffer(dataWritten, bytesWritten - 4);
    T* obj = NULL;
    SerializationUtils<T>::Read(buffer, &obj);
    REPORTER_ASSERT(reporter, !buffer.isValid());
    REPORTER_ASSERT(reporter, NULL == obj);

    // Make sure this succeeds when it should
    SkValidatingReadBuffer buffer2(dataWritten, bytesWritten);
    const unsigned char* peekBefore = static_cast<const unsigned char*>(buffer2.skip(0));
    T* obj2 = NULL;
    SerializationUtils<T>::Read(buffer2, &obj2);
    const unsigned char* peekAfter = static_cast<const unsigned char*>(buffer2.skip(0));
    if (shouldSucceed) {
        // This should have succeeded, since there are enough bytes to read this
        REPORTER_ASSERT(reporter, buffer2.isValid());
        REPORTER_ASSERT(reporter, static_cast<size_t>(peekAfter - peekBefore) == bytesWritten);
        REPORTER_ASSERT(reporter, NULL != obj2);
    } else {
        // If the deserialization was supposed to fail, make sure it did
        REPORTER_ASSERT(reporter, !buffer.isValid());
        REPORTER_ASSERT(reporter, NULL == obj2);
    }

    return obj2; // Return object to perform further validity tests on it
}

template<typename T>
static void TestArraySerialization(T* data, skiatest::Reporter* reporter) {
    SkOrderedWriteBuffer writer;
    writer.setFlags(SkOrderedWriteBuffer::kValidation_Flag);
    SerializationUtils<T>::Write(writer, data, kArraySize);
    size_t bytesWritten = writer.bytesWritten();
    // This should write the length (in 4 bytes) and the array
    REPORTER_ASSERT(reporter, (4 + kArraySize * sizeof(T)) == bytesWritten);

    unsigned char dataWritten[1024];
    writer.writeToMemory(dataWritten);

    // Make sure this fails when it should
    SkValidatingReadBuffer buffer(dataWritten, bytesWritten);
    T dataRead[kArraySize];
    bool success = SerializationUtils<T>::Read(buffer, dataRead, kArraySize / 2);
    // This should have failed, since the provided size was too small
    REPORTER_ASSERT(reporter, !success);

    // Make sure this succeeds when it should
    SkValidatingReadBuffer buffer2(dataWritten, bytesWritten);
    success = SerializationUtils<T>::Read(buffer2, dataRead, kArraySize);
    // This should have succeeded, since there are enough bytes to read this
    REPORTER_ASSERT(reporter, success);
}

static void TestBitmapSerialization(const SkBitmap& validBitmap,
                                    const SkBitmap& invalidBitmap,
                                    bool shouldSucceed,
                                    skiatest::Reporter* reporter) {
    SkBitmapSource validBitmapSource(validBitmap);
    SkBitmapSource invalidBitmapSource(invalidBitmap);
    SkAutoTUnref<SkXfermode> mode(SkXfermode::Create(SkXfermode::kSrcOver_Mode));
    SkXfermodeImageFilter xfermodeImageFilter(mode, &invalidBitmapSource, &validBitmapSource);

    SkAutoTUnref<SkImageFilter> deserializedFilter(
        TestFlattenableSerialization<SkImageFilter>(
            &xfermodeImageFilter, shouldSucceed, reporter));

    // Try to render a small bitmap using the invalid deserialized filter
    // to make sure we don't crash while trying to render it
    if (shouldSucceed) {
        SkBitmap bitmap;
        bitmap.setConfig(SkBitmap::kARGB_8888_Config, 24, 24);
        bitmap.allocPixels();
        SkBitmapDevice device(bitmap);
        SkCanvas canvas(&device);
        canvas.clear(0x00000000);
        SkPaint paint;
        paint.setImageFilter(deserializedFilter);
        canvas.clipRect(SkRect::MakeXYWH(0, 0, SkIntToScalar(24), SkIntToScalar(24)));
        canvas.drawBitmap(bitmap, 0, 0, &paint);
    }
}

DEF_TEST(Serialization, reporter) {
    // Test matrix serialization
    {
        SkMatrix matrix = SkMatrix::I();
        TestObjectSerialization(&matrix, reporter);
     }

    // Test path serialization
    {
        SkPath path;
        TestObjectSerialization(&path, reporter);
    }

    // Test region serialization
    {
        SkRegion region;
        TestObjectSerialization(&region, reporter);
    }

    // Test rrect serialization
    {
        // SkRRect does not initialize anything.
        // An uninitialized SkRRect can be serialized,
        // but will branch on uninitialized data when deserialized.
        SkRRect rrect;
        SkRect rect = SkRect::MakeXYWH(1, 2, 20, 30);
        SkVector corners[4] = { {1, 2}, {2, 3}, {3,4}, {4,5} };
        rrect.setRectRadii(rect, corners);
        TestAlignment(&rrect, reporter);
    }

    // Test readByteArray
    {
        unsigned char data[kArraySize] = { 1, 2, 3 };
        TestArraySerialization(data, reporter);
    }

    // Test readColorArray
    {
        SkColor data[kArraySize] = { SK_ColorBLACK, SK_ColorWHITE, SK_ColorRED };
        TestArraySerialization(data, reporter);
    }

    // Test readIntArray
    {
        int32_t data[kArraySize] = { 1, 2, 4, 8 };
        TestArraySerialization(data, reporter);
    }

    // Test readPointArray
    {
        SkPoint data[kArraySize] = { {6, 7}, {42, 128} };
        TestArraySerialization(data, reporter);
    }

    // Test readScalarArray
    {
        SkScalar data[kArraySize] = { SK_Scalar1, SK_ScalarHalf, SK_ScalarMax };
        TestArraySerialization(data, reporter);
    }

    // Test invalid deserializations
    {
        SkBitmap validBitmap;
        validBitmap.setConfig(SkBitmap::kARGB_8888_Config, 256, 256);

        // Create a bitmap with a really large height
        SkBitmap invalidBitmap;
        invalidBitmap.setConfig(SkBitmap::kARGB_8888_Config, 256, 1000000000);

        // The deserialization should succeed, and the rendering shouldn't crash,
        // even when the device fails to initialize, due to its size
        TestBitmapSerialization(validBitmap, invalidBitmap, true, reporter);

        // we assert if the pixelref doesn't agree with the config, so skip this
        // test (at least for now)
#if 0
        // Create a bitmap with a pixel ref too small
        SkImageInfo info;
        info.fWidth = 256;
        info.fHeight = 256;
        info.fColorType = kPMColor_SkColorType;
        info.fAlphaType = kPremul_SkAlphaType;

        SkBitmap invalidBitmap2;
        invalidBitmap2.setConfig(info);

        // Hack to force invalid, by making the pixelref smaller than its
        // owning bitmap.
        info.fWidth = 32;
        info.fHeight = 1;

        invalidBitmap2.setPixelRef(SkMallocPixelRef::NewAllocate(
                        info, invalidBitmap2.rowBytes(), NULL))->unref();

        // The deserialization should detect the pixel ref being too small and fail
        TestBitmapSerialization(validBitmap, invalidBitmap2, false, reporter);
#endif
    }
}