aboutsummaryrefslogtreecommitdiffhomepage
path: root/tests/ScalarTest.cpp
blob: b6f71d19bca35e465afcb4de6bb963e5c8312f0e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkFloatingPoint.h"
#include "SkMath.h"
#include "SkPoint.h"
#include "SkRandom.h"
#include "SkRect.h"
#include "Test.h"

static void test_roundtoint(skiatest::Reporter* reporter) {
    SkScalar x = 0.49999997f;
    int ix = SkScalarRoundToInt(x);
    // We "should" get 0, since x < 0.5, but we don't due to float addition rounding up the low
    // bit after adding 0.5.
    REPORTER_ASSERT(reporter, 1 == ix);

    // This version explicitly performs the +0.5 step using double, which should avoid losing the
    // low bits.
    ix = SkDScalarRoundToInt(x);
    REPORTER_ASSERT(reporter, 0 == ix);
}

struct PointSet {
    const SkPoint* fPts;
    size_t         fCount;
    bool           fIsFinite;
};

static void test_isRectFinite(skiatest::Reporter* reporter) {
    static const SkPoint gF0[] = {
        { 0, 0 }, { 1, 1 }
    };
    static const SkPoint gF1[] = {
        { 0, 0 }, { 1, 1 }, { 99.234f, -42342 }
    };

    static const SkPoint gI0[] = {
        { 0, 0 }, { 1, 1 }, { 99.234f, -42342 }, { SK_ScalarNaN, 3 }, { 2, 3 },
    };
    static const SkPoint gI1[] = {
        { 0, 0 }, { 1, 1 }, { 99.234f, -42342 }, { 3, SK_ScalarNaN }, { 2, 3 },
    };
    static const SkPoint gI2[] = {
        { 0, 0 }, { 1, 1 }, { 99.234f, -42342 }, { SK_ScalarInfinity, 3 }, { 2, 3 },
    };
    static const SkPoint gI3[] = {
        { 0, 0 }, { 1, 1 }, { 99.234f, -42342 }, { 3, SK_ScalarInfinity }, { 2, 3 },
    };

    static const struct {
        const SkPoint* fPts;
        size_t         fCount;
        bool           fIsFinite;
    } gSets[] = {
        { gF0, SK_ARRAY_COUNT(gF0), true },
        { gF1, SK_ARRAY_COUNT(gF1), true },

        { gI0, SK_ARRAY_COUNT(gI0), false },
        { gI1, SK_ARRAY_COUNT(gI1), false },
        { gI2, SK_ARRAY_COUNT(gI2), false },
        { gI3, SK_ARRAY_COUNT(gI3), false },
    };

    for (size_t i = 0; i < SK_ARRAY_COUNT(gSets); ++i) {
        SkRect r;
        r.set(gSets[i].fPts, gSets[i].fCount);
        bool rectIsFinite = !r.isEmpty();
        REPORTER_ASSERT(reporter, gSets[i].fIsFinite == rectIsFinite);
    }
}

static bool isFinite_int(float x) {
    uint32_t bits = SkFloat2Bits(x);    // need unsigned for our shifts
    int exponent = bits << 1 >> 24;
    return exponent != 0xFF;
}

static bool isFinite_float(float x) {
    return SkToBool(sk_float_isfinite(x));
}

static bool isFinite_mulzero(float x) {
    float y = x * 0;
    return y == y;
}

// return true if the float is finite
typedef bool (*IsFiniteProc1)(float);

static bool isFinite2_and(float x, float y, IsFiniteProc1 proc) {
    return proc(x) && proc(y);
}

static bool isFinite2_mulzeroadd(float x, float y, IsFiniteProc1 proc) {
    return proc(x * 0 + y * 0);
}

// return true if both floats are finite
typedef bool (*IsFiniteProc2)(float, float, IsFiniteProc1);

enum FloatClass {
    kFinite,
    kInfinite,
    kNaN
};

static void test_floatclass(skiatest::Reporter* reporter, float value, FloatClass fc) {
    // our sk_float_is... function may return int instead of bool,
    // hence the double ! to turn it into a bool
    REPORTER_ASSERT(reporter, !!sk_float_isfinite(value) == (fc == kFinite));
    REPORTER_ASSERT(reporter, !!sk_float_isinf(value) == (fc == kInfinite));
    REPORTER_ASSERT(reporter, !!sk_float_isnan(value) == (fc == kNaN));
}

#if defined _WIN32
#pragma warning ( push )
// we are intentionally causing an overflow here
//      (warning C4756: overflow in constant arithmetic)
#pragma warning ( disable : 4756 )
#endif

static void test_isfinite(skiatest::Reporter* reporter) {
    struct Rec {
        float   fValue;
        bool    fIsFinite;
    };

    float max = 3.402823466e+38f;
    float inf = max * max;
    float nan = inf * 0;

    test_floatclass(reporter,    0, kFinite);
    test_floatclass(reporter,  max, kFinite);
    test_floatclass(reporter, -max, kFinite);
    test_floatclass(reporter,  inf, kInfinite);
    test_floatclass(reporter, -inf, kInfinite);
    test_floatclass(reporter,  nan, kNaN);
    test_floatclass(reporter, -nan, kNaN);

    const Rec data[] = {
        {   0,           true    },
        {   1,           true    },
        {  -1,           true    },
        {  max * 0.75f,  true    },
        {  max,          true    },
        {  -max * 0.75f, true    },
        {  -max,         true    },
        {  inf,          false   },
        { -inf,          false   },
        {  nan,          false   },
    };

    const IsFiniteProc1 gProc1[] = {
        isFinite_int,
        isFinite_float,
        isFinite_mulzero
    };
    const IsFiniteProc2 gProc2[] = {
        isFinite2_and,
        isFinite2_mulzeroadd
    };

    size_t i, n = SK_ARRAY_COUNT(data);

    for (i = 0; i < n; ++i) {
        for (size_t k = 0; k < SK_ARRAY_COUNT(gProc1); ++k) {
            const Rec& rec = data[i];
            bool finite = gProc1[k](rec.fValue);
            REPORTER_ASSERT(reporter, rec.fIsFinite == finite);
        }
    }

    for (i = 0; i < n; ++i) {
        const Rec& rec0 = data[i];
        for (size_t j = 0; j < n; ++j) {
            const Rec& rec1 = data[j];
            for (size_t k = 0; k < SK_ARRAY_COUNT(gProc1); ++k) {
                IsFiniteProc1 proc1 = gProc1[k];

                for (size_t m = 0; m < SK_ARRAY_COUNT(gProc2); ++m) {
                    bool finite = gProc2[m](rec0.fValue, rec1.fValue, proc1);
                    bool finite2 = rec0.fIsFinite && rec1.fIsFinite;
                    REPORTER_ASSERT(reporter, finite2 == finite);
                }
            }
        }
    }

    test_isRectFinite(reporter);
}

#if defined _WIN32
#pragma warning ( pop )
#endif

DEF_TEST(Scalar, reporter) {
    test_isfinite(reporter);
    test_roundtoint(reporter);
}