1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <initializer_list>
#include "SkCanvas.h"
#include "SkColorData.h"
#include "SkHalf.h"
#include "SkImageInfoPriv.h"
#include "SkMathPriv.h"
#include "SkSurface.h"
#include "Test.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrContextFactory.h"
#include "GrContextPriv.h"
#include "GrProxyProvider.h"
#include "ProxyUtils.h"
#include "SkGr.h"
#endif
static const int DEV_W = 100, DEV_H = 100;
static const SkIRect DEV_RECT = SkIRect::MakeWH(DEV_W, DEV_H);
static const SkRect DEV_RECT_S = SkRect::MakeWH(DEV_W * SK_Scalar1,
DEV_H * SK_Scalar1);
static SkPMColor get_src_color(int x, int y) {
SkASSERT(x >= 0 && x < DEV_W);
SkASSERT(y >= 0 && y < DEV_H);
U8CPU r = x;
U8CPU g = y;
U8CPU b = 0xc;
U8CPU a = 0xff;
switch ((x+y) % 5) {
case 0:
a = 0xff;
break;
case 1:
a = 0x80;
break;
case 2:
a = 0xCC;
break;
case 4:
a = 0x01;
break;
case 3:
a = 0x00;
break;
}
return SkPremultiplyARGBInline(a, r, g, b);
}
static SkPMColor get_dst_bmp_init_color(int x, int y, int w) {
int n = y * w + x;
U8CPU b = n & 0xff;
U8CPU g = (n >> 8) & 0xff;
U8CPU r = (n >> 16) & 0xff;
return SkPackARGB32(0xff, r, g , b);
}
// TODO: Make this consider both ATs
static SkPMColor convert_to_pmcolor(SkColorType ct, SkAlphaType at, const uint32_t* addr,
bool* doUnpremul) {
*doUnpremul = (kUnpremul_SkAlphaType == at);
const uint8_t* c = reinterpret_cast<const uint8_t*>(addr);
U8CPU a,r,g,b;
switch (ct) {
case kBGRA_8888_SkColorType:
b = static_cast<U8CPU>(c[0]);
g = static_cast<U8CPU>(c[1]);
r = static_cast<U8CPU>(c[2]);
a = static_cast<U8CPU>(c[3]);
break;
case kRGB_888x_SkColorType: // fallthrough
case kRGBA_8888_SkColorType:
r = static_cast<U8CPU>(c[0]);
g = static_cast<U8CPU>(c[1]);
b = static_cast<U8CPU>(c[2]);
// We set this even when for kRGB_888x because our caller will validate that it is 0xff.
a = static_cast<U8CPU>(c[3]);
break;
default:
SkDEBUGFAIL("Unexpected colortype");
return 0;
}
if (*doUnpremul) {
r = SkMulDiv255Ceiling(r, a);
g = SkMulDiv255Ceiling(g, a);
b = SkMulDiv255Ceiling(b, a);
}
return SkPackARGB32(a, r, g, b);
}
static SkBitmap make_src_bitmap() {
static SkBitmap bmp;
if (bmp.isNull()) {
bmp.allocN32Pixels(DEV_W, DEV_H);
intptr_t pixels = reinterpret_cast<intptr_t>(bmp.getPixels());
for (int y = 0; y < DEV_H; ++y) {
for (int x = 0; x < DEV_W; ++x) {
SkPMColor* pixel = reinterpret_cast<SkPMColor*>(pixels + y * bmp.rowBytes() + x * bmp.bytesPerPixel());
*pixel = get_src_color(x, y);
}
}
}
return bmp;
}
static void fill_src_canvas(SkCanvas* canvas) {
canvas->save();
canvas->setMatrix(SkMatrix::I());
canvas->clipRect(DEV_RECT_S, kReplace_SkClipOp);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
canvas->drawBitmap(make_src_bitmap(), 0, 0, &paint);
canvas->restore();
}
static void fill_dst_bmp_with_init_data(SkBitmap* bitmap) {
int w = bitmap->width();
int h = bitmap->height();
intptr_t pixels = reinterpret_cast<intptr_t>(bitmap->getPixels());
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
SkPMColor initColor = get_dst_bmp_init_color(x, y, w);
if (kAlpha_8_SkColorType == bitmap->colorType()) {
uint8_t* alpha = reinterpret_cast<uint8_t*>(pixels + y * bitmap->rowBytes() + x);
*alpha = SkGetPackedA32(initColor);
} else {
SkPMColor* pixel = reinterpret_cast<SkPMColor*>(pixels + y * bitmap->rowBytes() + x * bitmap->bytesPerPixel());
*pixel = initColor;
}
}
}
}
static bool check_read_pixel(SkPMColor a, SkPMColor b, bool didPremulConversion) {
if (!didPremulConversion) {
return a == b;
}
int32_t aA = static_cast<int32_t>(SkGetPackedA32(a));
int32_t aR = static_cast<int32_t>(SkGetPackedR32(a));
int32_t aG = static_cast<int32_t>(SkGetPackedG32(a));
int32_t aB = SkGetPackedB32(a);
int32_t bA = static_cast<int32_t>(SkGetPackedA32(b));
int32_t bR = static_cast<int32_t>(SkGetPackedR32(b));
int32_t bG = static_cast<int32_t>(SkGetPackedG32(b));
int32_t bB = static_cast<int32_t>(SkGetPackedB32(b));
return aA == bA &&
SkAbs32(aR - bR) <= 1 &&
SkAbs32(aG - bG) <= 1 &&
SkAbs32(aB - bB) <= 1;
}
// checks the bitmap contains correct pixels after the readPixels
// if the bitmap was prefilled with pixels it checks that these weren't
// overwritten in the area outside the readPixels.
static bool check_read(skiatest::Reporter* reporter, const SkBitmap& bitmap, int x, int y,
bool checkSurfacePixels, bool checkBitmapPixels,
SkAlphaType surfaceAlphaType) {
SkAlphaType bmpAT = bitmap.alphaType();
SkColorType bmpCT = bitmap.colorType();
SkASSERT(!bitmap.isNull());
SkASSERT(checkSurfacePixels || checkBitmapPixels);
int bw = bitmap.width();
int bh = bitmap.height();
SkIRect srcRect = SkIRect::MakeXYWH(x, y, bw, bh);
SkIRect clippedSrcRect = DEV_RECT;
if (!clippedSrcRect.intersect(srcRect)) {
clippedSrcRect.setEmpty();
}
if (kAlpha_8_SkColorType == bmpCT) {
for (int by = 0; by < bh; ++by) {
for (int bx = 0; bx < bw; ++bx) {
int devx = bx + srcRect.fLeft;
int devy = by + srcRect.fTop;
const uint8_t* alpha = bitmap.getAddr8(bx, by);
if (clippedSrcRect.contains(devx, devy)) {
if (checkSurfacePixels) {
uint8_t surfaceAlpha = (surfaceAlphaType == kOpaque_SkAlphaType)
? 0xFF
: SkGetPackedA32(get_src_color(devx, devy));
if (surfaceAlpha != *alpha) {
ERRORF(reporter,
"Expected readback alpha (%d, %d) value 0x%02x, got 0x%02x. ",
bx, by, surfaceAlpha, *alpha);
return false;
}
}
} else if (checkBitmapPixels) {
uint32_t origDstAlpha = SkGetPackedA32(get_dst_bmp_init_color(bx, by, bw));
if (origDstAlpha != *alpha) {
ERRORF(reporter, "Expected clipped out area of readback to be unchanged. "
"Expected 0x%02x, got 0x%02x", origDstAlpha, *alpha);
return false;
}
}
}
}
return true;
}
for (int by = 0; by < bh; ++by) {
for (int bx = 0; bx < bw; ++bx) {
int devx = bx + srcRect.fLeft;
int devy = by + srcRect.fTop;
const uint32_t* pixel = bitmap.getAddr32(bx, by);
if (clippedSrcRect.contains(devx, devy)) {
if (checkSurfacePixels) {
SkPMColor surfacePMColor = get_src_color(devx, devy);
if (kOpaque_SkAlphaType == surfaceAlphaType || kOpaque_SkAlphaType == bmpAT) {
surfacePMColor |= 0xFF000000;
}
bool didPremul;
SkPMColor pmPixel = convert_to_pmcolor(bmpCT, bmpAT, pixel, &didPremul);
if (!check_read_pixel(pmPixel, surfacePMColor, didPremul)) {
ERRORF(reporter,
"Expected readback pixel (%d, %d) value 0x%08x, got 0x%08x. "
"Readback was unpremul: %d",
bx, by, surfacePMColor, pmPixel, didPremul);
return false;
}
}
} else if (checkBitmapPixels) {
uint32_t origDstPixel = get_dst_bmp_init_color(bx, by, bw);
if (origDstPixel != *pixel) {
ERRORF(reporter, "Expected clipped out area of readback to be unchanged. "
"Expected 0x%08x, got 0x%08x", origDstPixel, *pixel);
return false;
}
}
}
}
return true;
}
enum BitmapInit {
kFirstBitmapInit = 0,
kTight_BitmapInit = kFirstBitmapInit,
kRowBytes_BitmapInit,
kRowBytesOdd_BitmapInit,
kLastAligned_BitmapInit = kRowBytes_BitmapInit,
#if 0 // THIS CAUSES ERRORS ON WINDOWS AND SOME ANDROID DEVICES
kLast_BitmapInit = kRowBytesOdd_BitmapInit
#else
kLast_BitmapInit = kLastAligned_BitmapInit
#endif
};
static BitmapInit nextBMI(BitmapInit bmi) {
int x = bmi;
return static_cast<BitmapInit>(++x);
}
static void init_bitmap(SkBitmap* bitmap, const SkIRect& rect, BitmapInit init, SkColorType ct,
SkAlphaType at) {
SkImageInfo info = SkImageInfo::Make(rect.width(), rect.height(), ct, at);
size_t rowBytes = 0;
switch (init) {
case kTight_BitmapInit:
break;
case kRowBytes_BitmapInit:
rowBytes = SkAlign4((info.width() + 16) * info.bytesPerPixel());
break;
case kRowBytesOdd_BitmapInit:
rowBytes = SkAlign4(info.width() * info.bytesPerPixel()) + 3;
break;
default:
SkASSERT(0);
break;
}
bitmap->allocPixels(info, rowBytes);
}
static const struct {
SkColorType fColorType;
SkAlphaType fAlphaType;
} gReadPixelsConfigs[] = {
{kRGBA_8888_SkColorType, kPremul_SkAlphaType},
{kRGBA_8888_SkColorType, kUnpremul_SkAlphaType},
{kRGB_888x_SkColorType, kOpaque_SkAlphaType},
{kBGRA_8888_SkColorType, kPremul_SkAlphaType},
{kBGRA_8888_SkColorType, kUnpremul_SkAlphaType},
{kAlpha_8_SkColorType, kPremul_SkAlphaType},
};
const SkIRect gReadPixelsTestRects[] = {
// entire thing
DEV_RECT,
// larger on all sides
SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H + 10),
// fully contained
SkIRect::MakeLTRB(DEV_W / 4, DEV_H / 4, 3 * DEV_W / 4, 3 * DEV_H / 4),
// outside top left
SkIRect::MakeLTRB(-10, -10, -1, -1),
// touching top left corner
SkIRect::MakeLTRB(-10, -10, 0, 0),
// overlapping top left corner
SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H / 4),
// overlapping top left and top right corners
SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H / 4),
// touching entire top edge
SkIRect::MakeLTRB(-10, -10, DEV_W + 10, 0),
// overlapping top right corner
SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H / 4),
// contained in x, overlapping top edge
SkIRect::MakeLTRB(DEV_W / 4, -10, 3 * DEV_W / 4, DEV_H / 4),
// outside top right corner
SkIRect::MakeLTRB(DEV_W + 1, -10, DEV_W + 10, -1),
// touching top right corner
SkIRect::MakeLTRB(DEV_W, -10, DEV_W + 10, 0),
// overlapping top left and bottom left corners
SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H + 10),
// touching entire left edge
SkIRect::MakeLTRB(-10, -10, 0, DEV_H + 10),
// overlapping bottom left corner
SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W / 4, DEV_H + 10),
// contained in y, overlapping left edge
SkIRect::MakeLTRB(-10, DEV_H / 4, DEV_W / 4, 3 * DEV_H / 4),
// outside bottom left corner
SkIRect::MakeLTRB(-10, DEV_H + 1, -1, DEV_H + 10),
// touching bottom left corner
SkIRect::MakeLTRB(-10, DEV_H, 0, DEV_H + 10),
// overlapping bottom left and bottom right corners
SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10),
// touching entire left edge
SkIRect::MakeLTRB(0, DEV_H, DEV_W, DEV_H + 10),
// overlapping bottom right corner
SkIRect::MakeLTRB(3 * DEV_W / 4, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10),
// overlapping top right and bottom right corners
SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H + 10),
};
enum class ReadSuccessExpectation {
kNo,
kMaybe,
kYes,
};
bool check_success_expectation(ReadSuccessExpectation expectation, bool actualSuccess) {
switch (expectation) {
case ReadSuccessExpectation::kMaybe:
return true;
case ReadSuccessExpectation::kNo:
return !actualSuccess;
case ReadSuccessExpectation::kYes:
return actualSuccess;
}
return false;
}
ReadSuccessExpectation read_should_succeed(const SkIRect& srcRect, const SkImageInfo& dstInfo,
const SkImageInfo& srcInfo, bool isGPU) {
if (!SkIRect::Intersects(srcRect, DEV_RECT)) {
return ReadSuccessExpectation::kNo;
}
if (!SkImageInfoValidConversion(dstInfo, srcInfo)) {
return ReadSuccessExpectation::kNo;
}
if (!isGPU) {
return ReadSuccessExpectation::kYes;
}
// This serves more as documentation of what currently works on the GPU rather than desired
// expectations. Once we make GrSurfaceContext color/alpha type aware and clean up some read
// pixels code we will make more scenarios work.
// The GPU code current only does the premul->unpremul conversion, not the reverse.
if (srcInfo.alphaType() == kUnpremul_SkAlphaType &&
dstInfo.alphaType() == kPremul_SkAlphaType) {
return ReadSuccessExpectation::kNo;
}
// We don't currently require reading alpha-only surfaces to succeed because of some pessimistic
// caps decisions and alpha/red complexity in GL.
if (SkColorTypeIsAlphaOnly(srcInfo.colorType())) {
return ReadSuccessExpectation::kMaybe;
}
if (!SkColorTypeIsAlwaysOpaque(srcInfo.colorType()) &&
SkColorTypeIsAlwaysOpaque(dstInfo.colorType())) {
return ReadSuccessExpectation::kNo;
}
return ReadSuccessExpectation::kYes;
}
static void test_readpixels(skiatest::Reporter* reporter, const sk_sp<SkSurface>& surface,
const SkImageInfo& surfaceInfo, BitmapInit lastBitmapInit) {
SkCanvas* canvas = surface->getCanvas();
fill_src_canvas(canvas);
for (size_t rect = 0; rect < SK_ARRAY_COUNT(gReadPixelsTestRects); ++rect) {
const SkIRect& srcRect = gReadPixelsTestRects[rect];
for (BitmapInit bmi = kFirstBitmapInit; bmi <= lastBitmapInit; bmi = nextBMI(bmi)) {
for (size_t c = 0; c < SK_ARRAY_COUNT(gReadPixelsConfigs); ++c) {
SkBitmap bmp;
init_bitmap(&bmp, srcRect, bmi,
gReadPixelsConfigs[c].fColorType, gReadPixelsConfigs[c].fAlphaType);
// if the bitmap has pixels allocated before the readPixels,
// note that and fill them with pattern
bool startsWithPixels = !bmp.isNull();
if (startsWithPixels) {
fill_dst_bmp_with_init_data(&bmp);
}
uint32_t idBefore = surface->generationID();
bool success = surface->readPixels(bmp, srcRect.fLeft, srcRect.fTop);
uint32_t idAfter = surface->generationID();
// we expect to succeed when the read isn't fully clipped out and the infos are
// compatible.
bool isGPU = SkToBool(surface->getCanvas()->getGrContext());
auto expectSuccess = read_should_succeed(srcRect, bmp.info(), surfaceInfo, isGPU);
// determine whether we expected the read to succeed.
REPORTER_ASSERT(reporter, check_success_expectation(expectSuccess, success),
"Read succeed=%d unexpectedly, src ct/at: %d/%d, dst ct/at: %d/%d",
success, surfaceInfo.colorType(), surfaceInfo.alphaType(),
bmp.info().colorType(), bmp.info().alphaType());
// read pixels should never change the gen id
REPORTER_ASSERT(reporter, idBefore == idAfter);
if (success || startsWithPixels) {
check_read(reporter, bmp, srcRect.fLeft, srcRect.fTop, success,
startsWithPixels, surfaceInfo.alphaType());
} else {
// if we had no pixels beforehand and the readPixels
// failed then our bitmap should still not have pixels
REPORTER_ASSERT(reporter, bmp.isNull());
}
}
}
}
}
DEF_TEST(ReadPixels, reporter) {
const SkImageInfo info = SkImageInfo::MakeN32Premul(DEV_W, DEV_H);
auto surface(SkSurface::MakeRaster(info));
// SW readback fails a premul check when reading back to an unaligned rowbytes.
test_readpixels(reporter, surface, info, kLastAligned_BitmapInit);
}
#if SK_SUPPORT_GPU
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ReadPixels_Gpu, reporter, ctxInfo) {
if (ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D9_ES2_ContextType ||
ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_GL_ES2_ContextType ||
ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D11_ES2_ContextType) {
// skbug.com/6742 ReadPixels_Texture & _Gpu don't work with ANGLE ES2 configs
return;
}
static const SkImageInfo kImageInfos[] = {
SkImageInfo::Make(DEV_W, DEV_H, kRGBA_8888_SkColorType, kPremul_SkAlphaType),
SkImageInfo::Make(DEV_W, DEV_H, kBGRA_8888_SkColorType, kPremul_SkAlphaType),
SkImageInfo::Make(DEV_W, DEV_H, kRGB_888x_SkColorType, kOpaque_SkAlphaType),
SkImageInfo::Make(DEV_W, DEV_H, kAlpha_8_SkColorType, kPremul_SkAlphaType),
};
for (const auto& ii : kImageInfos) {
for (auto& origin : {kBottomLeft_GrSurfaceOrigin, kTopLeft_GrSurfaceOrigin}) {
sk_sp<SkSurface> surface(SkSurface::MakeRenderTarget(
ctxInfo.grContext(), SkBudgeted::kNo, ii, 0, origin, nullptr));
if (!surface) {
continue;
}
test_readpixels(reporter, surface, ii, kLast_BitmapInit);
}
}
}
#endif
#if SK_SUPPORT_GPU
static void test_readpixels_texture(skiatest::Reporter* reporter,
sk_sp<GrSurfaceContext> sContext,
const SkImageInfo& surfaceInfo) {
for (size_t rect = 0; rect < SK_ARRAY_COUNT(gReadPixelsTestRects); ++rect) {
const SkIRect& srcRect = gReadPixelsTestRects[rect];
for (BitmapInit bmi = kFirstBitmapInit; bmi <= kLast_BitmapInit; bmi = nextBMI(bmi)) {
for (size_t c = 0; c < SK_ARRAY_COUNT(gReadPixelsConfigs); ++c) {
SkBitmap bmp;
init_bitmap(&bmp, srcRect, bmi,
gReadPixelsConfigs[c].fColorType, gReadPixelsConfigs[c].fAlphaType);
// if the bitmap has pixels allocated before the readPixels,
// note that and fill them with pattern
bool startsWithPixels = !bmp.isNull();
// Try doing the read directly from a non-renderable texture
if (startsWithPixels) {
fill_dst_bmp_with_init_data(&bmp);
uint32_t flags = 0;
// TODO: These two hacks can go away when the surface context knows the alpha
// type.
// Tell the read to perform an unpremul step since it doesn't know alpha type.
if (gReadPixelsConfigs[c].fAlphaType == kUnpremul_SkAlphaType) {
flags = GrContextPriv::kUnpremul_PixelOpsFlag;
}
// The surface context doesn't know that the src is opaque. We don't support
// converting non-opaque data to opaque during a read.
if (bmp.alphaType() == kOpaque_SkAlphaType &&
surfaceInfo.alphaType() != kOpaque_SkAlphaType) {
continue;
}
bool success = sContext->readPixels(bmp.info(), bmp.getPixels(),
bmp.rowBytes(),
srcRect.fLeft, srcRect.fTop, flags);
auto expectSuccess =
read_should_succeed(srcRect, bmp.info(), surfaceInfo, true);
REPORTER_ASSERT(
reporter, check_success_expectation(expectSuccess, success),
"Read succeed=%d unexpectedly, src ct/at: %d/%d, dst ct/at: %d/%d",
success, surfaceInfo.colorType(), surfaceInfo.alphaType(),
bmp.info().colorType(), bmp.info().alphaType());
if (success) {
check_read(reporter, bmp, srcRect.fLeft, srcRect.fTop, success, true,
surfaceInfo.alphaType());
}
}
}
}
}
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ReadPixels_Texture, reporter, ctxInfo) {
if (ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D9_ES2_ContextType ||
ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_GL_ES2_ContextType ||
ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D11_ES2_ContextType) {
// skbug.com/6742 ReadPixels_Texture & _Gpu don't work with ANGLE ES2 configs
return;
}
GrContext* context = ctxInfo.grContext();
SkBitmap bmp = make_src_bitmap();
// On the GPU we will also try reading back from a non-renderable texture.
for (auto origin : {kBottomLeft_GrSurfaceOrigin, kTopLeft_GrSurfaceOrigin}) {
for (auto isRT : {false, true}) {
sk_sp<GrTextureProxy> proxy = sk_gpu_test::MakeTextureProxyFromData(
context, isRT, DEV_W, DEV_H, bmp.colorType(), origin, bmp.getPixels(),
bmp.rowBytes());
sk_sp<GrSurfaceContext> sContext = context->contextPriv().makeWrappedSurfaceContext(
std::move(proxy));
auto info = SkImageInfo::Make(DEV_W, DEV_H, kN32_SkColorType, kPremul_SkAlphaType);
test_readpixels_texture(reporter, std::move(sContext), info);
}
}
}
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
static const uint32_t kNumPixels = 5;
// The five reference pixels are: red, green, blue, white, black.
// Five is an interesting number to test because we'll exercise a full 4-wide SIMD vector
// plus a tail pixel.
static const uint32_t rgba[kNumPixels] = {
0xFF0000FF, 0xFF00FF00, 0xFFFF0000, 0xFFFFFFFF, 0xFF000000
};
static const uint32_t bgra[kNumPixels] = {
0xFFFF0000, 0xFF00FF00, 0xFF0000FF, 0xFFFFFFFF, 0xFF000000
};
static const uint16_t rgb565[kNumPixels] = {
SK_R16_MASK_IN_PLACE, SK_G16_MASK_IN_PLACE, SK_B16_MASK_IN_PLACE, 0xFFFF, 0x0
};
static const uint16_t rgba4444[kNumPixels] = { 0xF00F, 0x0F0F, 0x00FF, 0xFFFF, 0x000F };
static const uint64_t kRed = (uint64_t) SK_Half1 << 0;
static const uint64_t kGreen = (uint64_t) SK_Half1 << 16;
static const uint64_t kBlue = (uint64_t) SK_Half1 << 32;
static const uint64_t kAlpha = (uint64_t) SK_Half1 << 48;
static const uint64_t f16[kNumPixels] = {
kAlpha | kRed, kAlpha | kGreen, kAlpha | kBlue, kAlpha | kBlue | kGreen | kRed, kAlpha
};
static const uint8_t alpha8[kNumPixels] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
static const uint8_t gray8[kNumPixels] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
static const void* five_reference_pixels(SkColorType colorType) {
switch (colorType) {
case kUnknown_SkColorType:
return nullptr;
case kAlpha_8_SkColorType:
return alpha8;
case kRGB_565_SkColorType:
return rgb565;
case kARGB_4444_SkColorType:
return rgba4444;
case kRGBA_8888_SkColorType:
return rgba;
case kBGRA_8888_SkColorType:
return bgra;
case kGray_8_SkColorType:
return gray8;
case kRGBA_F16_SkColorType:
return f16;
default:
return nullptr; // remove me when kIndex_8 is removed from the enum
}
SkASSERT(false);
return nullptr;
}
static void test_conversion(skiatest::Reporter* r, const SkImageInfo& dstInfo,
const SkImageInfo& srcInfo) {
if (!SkImageInfoIsValidRenderingCS(srcInfo)) {
return;
}
const void* srcPixels = five_reference_pixels(srcInfo.colorType());
SkPixmap srcPixmap(srcInfo, srcPixels, srcInfo.minRowBytes());
sk_sp<SkImage> src = SkImage::MakeFromRaster(srcPixmap, nullptr, nullptr);
REPORTER_ASSERT(r, src);
// Enough space for 5 pixels when color type is F16, more than enough space in other cases.
uint64_t dstPixels[kNumPixels];
SkPixmap dstPixmap(dstInfo, dstPixels, dstInfo.minRowBytes());
bool success = src->readPixels(dstPixmap, 0, 0);
REPORTER_ASSERT(r, success == SkImageInfoValidConversion(dstInfo, srcInfo));
if (success) {
if (kGray_8_SkColorType == srcInfo.colorType() &&
kGray_8_SkColorType != dstInfo.colorType())
{
// This conversion is legal, but we won't get the "reference" pixels since we cannot
// represent colors in kGray8.
return;
}
REPORTER_ASSERT(r, 0 == memcmp(dstPixels, five_reference_pixels(dstInfo.colorType()),
kNumPixels * SkColorTypeBytesPerPixel(dstInfo.colorType())));
}
}
DEF_TEST(ReadPixels_ValidConversion, reporter) {
const SkColorType kColorTypes[] = {
kUnknown_SkColorType,
kAlpha_8_SkColorType,
kRGB_565_SkColorType,
kARGB_4444_SkColorType,
kRGBA_8888_SkColorType,
kBGRA_8888_SkColorType,
kGray_8_SkColorType,
kRGBA_F16_SkColorType,
};
const SkAlphaType kAlphaTypes[] = {
kUnknown_SkAlphaType,
kOpaque_SkAlphaType,
kPremul_SkAlphaType,
kUnpremul_SkAlphaType,
};
const sk_sp<SkColorSpace> kColorSpaces[] = {
nullptr,
SkColorSpace::MakeSRGB(),
};
for (SkColorType dstCT : kColorTypes) {
for (SkAlphaType dstAT: kAlphaTypes) {
for (sk_sp<SkColorSpace> dstCS : kColorSpaces) {
for (SkColorType srcCT : kColorTypes) {
for (SkAlphaType srcAT: kAlphaTypes) {
for (sk_sp<SkColorSpace> srcCS : kColorSpaces) {
if (kRGBA_F16_SkColorType == dstCT && dstCS) {
dstCS = dstCS->makeLinearGamma();
}
if (kRGBA_F16_SkColorType == srcCT && srcCS) {
srcCS = srcCS->makeLinearGamma();
}
test_conversion(reporter,
SkImageInfo::Make(kNumPixels, 1, dstCT, dstAT, dstCS),
SkImageInfo::Make(kNumPixels, 1, srcCT, srcAT, srcCS));
}
}
}
}
}
}
}
|