1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmapDevice.h"
#include "SkCanvas.h"
#include "SkConfig8888.h"
#include "Test.h"
#include "TestClassDef.h"
#if SK_SUPPORT_GPU
#include "GrContextFactory.h"
#include "SkGpuDevice.h"
#endif
static void fillCanvas(SkCanvas* canvas, SkCanvas::Config8888 unpremulConfig) {
SkBitmap bmp;
bmp.setConfig(SkBitmap::kARGB_8888_Config, 256, 256);
bmp.allocPixels();
SkAutoLockPixels alp(bmp);
uint32_t* pixels = reinterpret_cast<uint32_t*>(bmp.getPixels());
for (int a = 0; a < 256; ++a) {
for (int r = 0; r < 256; ++r) {
pixels[a * 256 + r] = SkPackConfig8888(unpremulConfig, a, r, 0, 0);
}
}
canvas->writePixels(bmp, 0, 0, unpremulConfig);
}
static const SkCanvas::Config8888 gUnpremulConfigs[] = {
SkCanvas::kNative_Unpremul_Config8888,
SkCanvas::kBGRA_Unpremul_Config8888,
SkCanvas::kRGBA_Unpremul_Config8888,
};
DEF_GPUTEST(PremulAlphaRoundTrip, reporter, factory) {
SkAutoTUnref<SkBaseDevice> device;
for (int dtype = 0; dtype < 2; ++dtype) {
int glCtxTypeCnt = 1;
#if SK_SUPPORT_GPU
if (0 != dtype) {
glCtxTypeCnt = GrContextFactory::kGLContextTypeCnt;
}
#endif
for (int glCtxType = 0; glCtxType < glCtxTypeCnt; ++glCtxType) {
if (0 == dtype) {
device.reset(new SkBitmapDevice(SkBitmap::kARGB_8888_Config,
256,
256,
false));
} else {
#if SK_SUPPORT_GPU
GrContextFactory::GLContextType type =
static_cast<GrContextFactory::GLContextType>(glCtxType);
if (!GrContextFactory::IsRenderingGLContext(type)) {
continue;
}
GrContext* context = factory->get(type);
if (NULL == context) {
continue;
}
device.reset(new SkGpuDevice(context, SkBitmap::kARGB_8888_Config, 256, 256));
#else
continue;
#endif
}
SkCanvas canvas(device);
SkBitmap readBmp1;
readBmp1.setConfig(SkBitmap::kARGB_8888_Config, 256, 256);
readBmp1.allocPixels();
SkBitmap readBmp2;
readBmp2.setConfig(SkBitmap::kARGB_8888_Config, 256, 256);
readBmp2.allocPixels();
for (size_t upmaIdx = 0;
upmaIdx < SK_ARRAY_COUNT(gUnpremulConfigs);
++upmaIdx) {
fillCanvas(&canvas, gUnpremulConfigs[upmaIdx]);
{
SkAutoLockPixels alp1(readBmp1);
SkAutoLockPixels alp2(readBmp2);
sk_bzero(readBmp1.getPixels(), readBmp1.getSafeSize());
sk_bzero(readBmp2.getPixels(), readBmp2.getSafeSize());
}
canvas.readPixels(&readBmp1, 0, 0, gUnpremulConfigs[upmaIdx]);
canvas.writePixels(readBmp1, 0, 0, gUnpremulConfigs[upmaIdx]);
canvas.readPixels(&readBmp2, 0, 0, gUnpremulConfigs[upmaIdx]);
SkAutoLockPixels alp1(readBmp1);
SkAutoLockPixels alp2(readBmp2);
uint32_t* pixels1 =
reinterpret_cast<uint32_t*>(readBmp1.getPixels());
uint32_t* pixels2 =
reinterpret_cast<uint32_t*>(readBmp2.getPixels());
bool success = true;
for (int y = 0; y < 256 && success; ++y) {
for (int x = 0; x < 256 && success; ++x) {
int i = y * 256 + x;
REPORTER_ASSERT(reporter, success = pixels1[i] == pixels2[i]);
}
}
}
}
}
}
|