aboutsummaryrefslogtreecommitdiffhomepage
path: root/tests/PathTest.cpp
blob: 0cdc58d831a7dfbe6f778e2837bbe7b898215d3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260

/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "Test.h"
#include "SkCanvas.h"
#include "SkPaint.h"
#include "SkPath.h"
#include "SkParse.h"
#include "SkParsePath.h"
#include "SkPathEffect.h"
#include "SkRandom.h"
#include "SkReader32.h"
#include "SkSize.h"
#include "SkWriter32.h"
#include "SkSurface.h"

#if defined(WIN32)
    #define SUPPRESS_VISIBILITY_WARNING
#else
    #define SUPPRESS_VISIBILITY_WARNING __attribute__((visibility("hidden")))
#endif

static SkSurface* new_surface(int w, int h) {
    SkImage::Info info = {
        w, h, SkImage::kPMColor_ColorType, SkImage::kPremul_AlphaType
    };
    return SkSurface::NewRaster(info);
}

// Make sure we stay non-finite once we get there (unless we reset or rewind).
static void test_addrect_isfinite(skiatest::Reporter* reporter) {
    SkPath path;

    path.addRect(SkRect::MakeWH(50, 100));
    REPORTER_ASSERT(reporter, path.isFinite());

    path.moveTo(0, 0);
    path.lineTo(SK_ScalarInfinity, 42);
    REPORTER_ASSERT(reporter, !path.isFinite());

    path.addRect(SkRect::MakeWH(50, 100));
    REPORTER_ASSERT(reporter, !path.isFinite());

    path.reset();
    REPORTER_ASSERT(reporter, path.isFinite());

    path.addRect(SkRect::MakeWH(50, 100));
    REPORTER_ASSERT(reporter, path.isFinite());
}

static void build_big_path(SkPath* path, bool reducedCase) {
    if (reducedCase) {
        path->moveTo(577330, 1971.72f);
        path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f);
    } else {
        path->moveTo(60.1631f, 7.70567f);
        path->quadTo(60.1631f, 7.70567f, 0.99474f, 0.901199f);
        path->lineTo(577379, 1977.77f);
        path->quadTo(577364, 1979.57f, 577325, 1980.26f);
        path->quadTo(577286, 1980.95f, 577245, 1980.13f);
        path->quadTo(577205, 1979.3f, 577187, 1977.45f);
        path->quadTo(577168, 1975.6f, 577183, 1973.8f);
        path->quadTo(577198, 1972, 577238, 1971.31f);
        path->quadTo(577277, 1970.62f, 577317, 1971.45f);
        path->quadTo(577330, 1971.72f, 577341, 1972.11f);
        path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f);
        path->moveTo(306.718f, -32.912f);
        path->cubicTo(30.531f, 10.0005f, 1502.47f, 13.2804f, 84.3088f, 9.99601f);
    }
}

static void test_clipped_cubic(skiatest::Reporter* reporter) {
    SkAutoTUnref<SkSurface> surface(new_surface(640, 480));

    // This path used to assert, because our cubic-chopping code incorrectly
    // moved control points after the chop. This test should be run in SK_DEBUG
    // mode to ensure that we no long assert.
    SkPath path;
    for (int doReducedCase = 0; doReducedCase <= 1; ++doReducedCase) {
        build_big_path(&path, SkToBool(doReducedCase));

        SkPaint paint;
        for (int doAA = 0; doAA <= 1; ++doAA) {
            paint.setAntiAlias(SkToBool(doAA));
            surface->getCanvas()->drawPath(path, paint);
        }
    }
}

// Inspired by http://ie.microsoft.com/testdrive/Performance/Chalkboard/
// which triggered an assert, from a tricky cubic. This test replicates that
// example, so we can ensure that we handle it (in SkEdge.cpp), and don't
// assert in the SK_DEBUG build.
static void test_tricky_cubic(skiatest::Reporter* reporter) {
    const SkPoint pts[] = {
        { SkDoubleToScalar(18.8943768),    SkDoubleToScalar(129.121277) },
        { SkDoubleToScalar(18.8937435),    SkDoubleToScalar(129.121689) },
        { SkDoubleToScalar(18.8950119),    SkDoubleToScalar(129.120422) },
        { SkDoubleToScalar(18.5030727),    SkDoubleToScalar(129.13121)  },
    };

    SkPath path;
    path.moveTo(pts[0]);
    path.cubicTo(pts[1], pts[2], pts[3]);

    SkPaint paint;
    paint.setAntiAlias(true);

    SkSurface* surface = new_surface(19, 130);
    surface->getCanvas()->drawPath(path, paint);
    surface->unref();
}

// Inspired by http://code.google.com/p/chromium/issues/detail?id=141651
//
static void test_isfinite_after_transform(skiatest::Reporter* reporter) {
    SkPath path;
    path.quadTo(157, 366, 286, 208);
    path.arcTo(37, 442, 315, 163, 957494590897113.0f);

    SkMatrix matrix;
    matrix.setScale(1000*1000, 1000*1000);

    // Be sure that path::transform correctly updates isFinite and the bounds
    // if the transformation overflows. The previous bug was that isFinite was
    // set to true in this case, but the bounds were not set to empty (which
    // they should be).
    while (path.isFinite()) {
        REPORTER_ASSERT(reporter, path.getBounds().isFinite());
        REPORTER_ASSERT(reporter, !path.getBounds().isEmpty());
        path.transform(matrix);
    }
    REPORTER_ASSERT(reporter, path.getBounds().isEmpty());

    matrix.setTranslate(SK_Scalar1, SK_Scalar1);
    path.transform(matrix);
    // we need to still be non-finite
    REPORTER_ASSERT(reporter, !path.isFinite());
    REPORTER_ASSERT(reporter, path.getBounds().isEmpty());
}

static void add_corner_arc(SkPath* path, const SkRect& rect,
                           SkScalar xIn, SkScalar yIn,
                           int startAngle)
{

    SkScalar rx = SkMinScalar(rect.width(), xIn);
    SkScalar ry = SkMinScalar(rect.height(), yIn);

    SkRect arcRect;
    arcRect.set(-rx, -ry, rx, ry);
    switch (startAngle) {
    case 0:
        arcRect.offset(rect.fRight - arcRect.fRight, rect.fBottom - arcRect.fBottom);
        break;
    case 90:
        arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fBottom - arcRect.fBottom);
        break;
    case 180:
        arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fTop - arcRect.fTop);
        break;
    case 270:
        arcRect.offset(rect.fRight - arcRect.fRight, rect.fTop - arcRect.fTop);
        break;
    default:
        break;
    }

    path->arcTo(arcRect, SkIntToScalar(startAngle), SkIntToScalar(90), false);
}

static void make_arb_round_rect(SkPath* path, const SkRect& r,
                                SkScalar xCorner, SkScalar yCorner) {
    // we are lazy here and use the same x & y for each corner
    add_corner_arc(path, r, xCorner, yCorner, 270);
    add_corner_arc(path, r, xCorner, yCorner, 0);
    add_corner_arc(path, r, xCorner, yCorner, 90);
    add_corner_arc(path, r, xCorner, yCorner, 180);
    path->close();
}

// Chrome creates its own round rects with each corner possibly being different.
// Performance will suffer if they are not convex.
// Note: PathBench::ArbRoundRectBench performs almost exactly
// the same test (but with drawing)
static void test_arb_round_rect_is_convex(skiatest::Reporter* reporter) {
    SkRandom rand;
    SkRect r;

    for (int i = 0; i < 5000; ++i) {

        SkScalar size = rand.nextUScalar1() * 30;
        if (size < SK_Scalar1) {
            continue;
        }
        r.fLeft = rand.nextUScalar1() * 300;
        r.fTop =  rand.nextUScalar1() * 300;
        r.fRight =  r.fLeft + 2 * size;
        r.fBottom = r.fTop + 2 * size;

        SkPath temp;

        make_arb_round_rect(&temp, r, r.width() / 10, r.height() / 15);

#ifdef SK_REDEFINE_ROOT2OVER2_TO_MAKE_ARCTOS_CONVEX
        REPORTER_ASSERT(reporter, temp.isConvex());
#endif
    }
}

// Chrome will sometimes create a 0 radius round rect. The degenerate
// quads prevent the path from being converted to a rect
// Note: PathBench::ArbRoundRectBench performs almost exactly
// the same test (but with drawing)
static void test_arb_zero_rad_round_rect_is_rect(skiatest::Reporter* reporter) {
    SkRandom rand;
    SkRect r;

    for (int i = 0; i < 5000; ++i) {

        SkScalar size = rand.nextUScalar1() * 30;
        if (size < SK_Scalar1) {
            continue;
        }
        r.fLeft = rand.nextUScalar1() * 300;
        r.fTop =  rand.nextUScalar1() * 300;
        r.fRight =  r.fLeft + 2 * size;
        r.fBottom = r.fTop + 2 * size;

        SkPath temp;

        make_arb_round_rect(&temp, r, 0, 0);

#ifdef SK_REDEFINE_ROOT2OVER2_TO_MAKE_ARCTOS_CONVEX
        SkRect result;
        REPORTER_ASSERT(reporter, temp.isRect(&result));
        REPORTER_ASSERT(reporter, r == result);
#endif
    }
}

static void test_rect_isfinite(skiatest::Reporter* reporter) {
    const SkScalar inf = SK_ScalarInfinity;
    const SkScalar nan = SK_ScalarNaN;

    SkRect r;
    r.setEmpty();
    REPORTER_ASSERT(reporter, r.isFinite());
    r.set(0, 0, inf, -inf);
    REPORTER_ASSERT(reporter, !r.isFinite());
    r.set(0, 0, nan, 0);
    REPORTER_ASSERT(reporter, !r.isFinite());

    SkPoint pts[] = {
        { 0, 0 },
        { SK_Scalar1, 0 },
        { 0, SK_Scalar1 },
    };

    bool isFine = r.setBoundsCheck(pts, 3);
    REPORTER_ASSERT(reporter, isFine);
    REPORTER_ASSERT(reporter, !r.isEmpty());

    pts[1].set(inf, 0);
    isFine = r.setBoundsCheck(pts, 3);
    REPORTER_ASSERT(reporter, !isFine);
    REPORTER_ASSERT(reporter, r.isEmpty());

    pts[1].set(nan, 0);
    isFine = r.setBoundsCheck(pts, 3);
    REPORTER_ASSERT(reporter, !isFine);
    REPORTER_ASSERT(reporter, r.isEmpty());
}

static void test_path_isfinite(skiatest::Reporter* reporter) {
    const SkScalar inf = SK_ScalarInfinity;
    const SkScalar negInf = SK_ScalarNegativeInfinity;
    const SkScalar nan = SK_ScalarNaN;

    SkPath path;
    REPORTER_ASSERT(reporter, path.isFinite());

    path.reset();
    REPORTER_ASSERT(reporter, path.isFinite());

    path.reset();
    path.moveTo(SK_Scalar1, 0);
    REPORTER_ASSERT(reporter, path.isFinite());

    path.reset();
    path.moveTo(inf, negInf);
    REPORTER_ASSERT(reporter, !path.isFinite());

    path.reset();
    path.moveTo(nan, 0);
    REPORTER_ASSERT(reporter, !path.isFinite());
}

static void test_isfinite(skiatest::Reporter* reporter) {
    test_rect_isfinite(reporter);
    test_path_isfinite(reporter);
}

// assert that we always
//  start with a moveTo
//  only have 1 moveTo
//  only have Lines after that
//  end with a single close
//  only have (at most) 1 close
//
static void test_poly(skiatest::Reporter* reporter, const SkPath& path,
                      const SkPoint srcPts[], int count, bool expectClose) {
    SkPath::RawIter iter(path);
    SkPoint         pts[4];

    bool firstTime = true;
    bool foundClose = false;
    for (;;) {
        switch (iter.next(pts)) {
            case SkPath::kMove_Verb:
                REPORTER_ASSERT(reporter, firstTime);
                REPORTER_ASSERT(reporter, pts[0] == srcPts[0]);
                srcPts++;
                firstTime = false;
                break;
            case SkPath::kLine_Verb:
                REPORTER_ASSERT(reporter, !firstTime);
                REPORTER_ASSERT(reporter, pts[1] == srcPts[0]);
                srcPts++;
                break;
            case SkPath::kQuad_Verb:
                REPORTER_ASSERT(reporter, !"unexpected quad verb");
                break;
            case SkPath::kCubic_Verb:
                REPORTER_ASSERT(reporter, !"unexpected cubic verb");
                break;
            case SkPath::kClose_Verb:
                REPORTER_ASSERT(reporter, !firstTime);
                REPORTER_ASSERT(reporter, !foundClose);
                REPORTER_ASSERT(reporter, expectClose);
                foundClose = true;
                break;
            case SkPath::kDone_Verb:
                goto DONE;
        }
    }
DONE:
    REPORTER_ASSERT(reporter, foundClose == expectClose);
}

static void test_addPoly(skiatest::Reporter* reporter) {
    SkPoint pts[32];
    SkRandom rand;

    for (size_t i = 0; i < SK_ARRAY_COUNT(pts); ++i) {
        pts[i].fX = rand.nextSScalar1();
        pts[i].fY = rand.nextSScalar1();
    }

    for (int doClose = 0; doClose <= 1; ++doClose) {
        for (size_t count = 1; count <= SK_ARRAY_COUNT(pts); ++count) {
            SkPath path;
            path.addPoly(pts, count, SkToBool(doClose));
            test_poly(reporter, path, pts, count, SkToBool(doClose));
        }
    }
}

static void test_strokerec(skiatest::Reporter* reporter) {
    SkStrokeRec rec(SkStrokeRec::kFill_InitStyle);
    REPORTER_ASSERT(reporter, rec.isFillStyle());

    rec.setHairlineStyle();
    REPORTER_ASSERT(reporter, rec.isHairlineStyle());

    rec.setStrokeStyle(SK_Scalar1, false);
    REPORTER_ASSERT(reporter, SkStrokeRec::kStroke_Style == rec.getStyle());

    rec.setStrokeStyle(SK_Scalar1, true);
    REPORTER_ASSERT(reporter, SkStrokeRec::kStrokeAndFill_Style == rec.getStyle());

    rec.setStrokeStyle(0, false);
    REPORTER_ASSERT(reporter, SkStrokeRec::kHairline_Style == rec.getStyle());

    rec.setStrokeStyle(0, true);
    REPORTER_ASSERT(reporter, SkStrokeRec::kFill_Style == rec.getStyle());
}

// Set this for paths that don't have a consistent direction such as a bowtie.
// (cheapComputeDirection is not expected to catch these.)
static const SkPath::Direction kDontCheckDir = static_cast<SkPath::Direction>(-1);

static void check_direction(skiatest::Reporter* reporter, const SkPath& path,
                            SkPath::Direction expected) {
    if (expected == kDontCheckDir) {
        return;
    }
    SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path.

    SkPath::Direction dir;
    if (copy.cheapComputeDirection(&dir)) {
        REPORTER_ASSERT(reporter, dir == expected);
    } else {
        REPORTER_ASSERT(reporter, SkPath::kUnknown_Direction == expected);
    }
}

static void test_direction(skiatest::Reporter* reporter) {
    size_t i;
    SkPath path;
    REPORTER_ASSERT(reporter, !path.cheapComputeDirection(NULL));
    REPORTER_ASSERT(reporter, !path.cheapIsDirection(SkPath::kCW_Direction));
    REPORTER_ASSERT(reporter, !path.cheapIsDirection(SkPath::kCCW_Direction));
    REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kUnknown_Direction));

    static const char* gDegen[] = {
        "M 10 10",
        "M 10 10 M 20 20",
        "M 10 10 L 20 20",
        "M 10 10 L 10 10 L 10 10",
        "M 10 10 Q 10 10 10 10",
        "M 10 10 C 10 10 10 10 10 10",
    };
    for (i = 0; i < SK_ARRAY_COUNT(gDegen); ++i) {
        path.reset();
        bool valid = SkParsePath::FromSVGString(gDegen[i], &path);
        REPORTER_ASSERT(reporter, valid);
        REPORTER_ASSERT(reporter, !path.cheapComputeDirection(NULL));
    }

    static const char* gCW[] = {
        "M 10 10 L 10 10 Q 20 10 20 20",
        "M 10 10 C 20 10 20 20 20 20",
        "M 20 10 Q 20 20 30 20 L 10 20", // test double-back at y-max
        // rect with top two corners replaced by cubics with identical middle
        // control points
        "M 10 10 C 10 0 10 0 20 0 L 40 0 C 50 0 50 0 50 10",
        "M 20 10 L 0 10 Q 10 10 20 0",  // left, degenerate serif
    };
    for (i = 0; i < SK_ARRAY_COUNT(gCW); ++i) {
        path.reset();
        bool valid = SkParsePath::FromSVGString(gCW[i], &path);
        REPORTER_ASSERT(reporter, valid);
        check_direction(reporter, path, SkPath::kCW_Direction);
    }

    static const char* gCCW[] = {
        "M 10 10 L 10 10 Q 20 10 20 -20",
        "M 10 10 C 20 10 20 -20 20 -20",
        "M 20 10 Q 20 20 10 20 L 30 20", // test double-back at y-max
        // rect with top two corners replaced by cubics with identical middle
        // control points
        "M 50 10 C 50 0 50 0 40 0 L 20 0 C 10 0 10 0 10 10",
        "M 10 10 L 30 10 Q 20 10 10 0",  // right, degenerate serif
    };
    for (i = 0; i < SK_ARRAY_COUNT(gCCW); ++i) {
        path.reset();
        bool valid = SkParsePath::FromSVGString(gCCW[i], &path);
        REPORTER_ASSERT(reporter, valid);
        check_direction(reporter, path, SkPath::kCCW_Direction);
    }

    // Test two donuts, each wound a different direction. Only the outer contour
    // determines the cheap direction
    path.reset();
    path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCW_Direction);
    path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCCW_Direction);
    check_direction(reporter, path, SkPath::kCW_Direction);

    path.reset();
    path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCW_Direction);
    path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCCW_Direction);
    check_direction(reporter, path, SkPath::kCCW_Direction);

#ifdef SK_SCALAR_IS_FLOAT
    // triangle with one point really far from the origin.
    path.reset();
    // the first point is roughly 1.05e10, 1.05e10
    path.moveTo(SkFloatToScalar(SkBits2Float(0x501c7652)), SkFloatToScalar(SkBits2Float(0x501c7652)));
    path.lineTo(110 * SK_Scalar1, -10 * SK_Scalar1);
    path.lineTo(-10 * SK_Scalar1, 60 * SK_Scalar1);
    check_direction(reporter, path, SkPath::kCCW_Direction);
#endif
}

static void add_rect(SkPath* path, const SkRect& r) {
    path->moveTo(r.fLeft, r.fTop);
    path->lineTo(r.fRight, r.fTop);
    path->lineTo(r.fRight, r.fBottom);
    path->lineTo(r.fLeft, r.fBottom);
    path->close();
}

static void test_bounds(skiatest::Reporter* reporter) {
    static const SkRect rects[] = {
        { SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(160) },
        { SkIntToScalar(610), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(199) },
        { SkIntToScalar(10), SkIntToScalar(198), SkIntToScalar(610), SkIntToScalar(199) },
        { SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(10), SkIntToScalar(199) },
    };

    SkPath path0, path1;
    for (size_t i = 0; i < SK_ARRAY_COUNT(rects); ++i) {
        path0.addRect(rects[i]);
        add_rect(&path1, rects[i]);
    }

    REPORTER_ASSERT(reporter, path0.getBounds() == path1.getBounds());
}

static void stroke_cubic(const SkPoint pts[4]) {
    SkPath path;
    path.moveTo(pts[0]);
    path.cubicTo(pts[1], pts[2], pts[3]);

    SkPaint paint;
    paint.setStyle(SkPaint::kStroke_Style);
    paint.setStrokeWidth(SK_Scalar1 * 2);

    SkPath fill;
    paint.getFillPath(path, &fill);
}

// just ensure this can run w/o any SkASSERTS firing in the debug build
// we used to assert due to differences in how we determine a degenerate vector
// but that was fixed with the introduction of SkPoint::CanNormalize
static void stroke_tiny_cubic() {
    SkPoint p0[] = {
        { 372.0f,   92.0f },
        { 372.0f,   92.0f },
        { 372.0f,   92.0f },
        { 372.0f,   92.0f },
    };

    stroke_cubic(p0);

    SkPoint p1[] = {
        { 372.0f,       92.0f },
        { 372.0007f,    92.000755f },
        { 371.99927f,   92.003922f },
        { 371.99826f,   92.003899f },
    };

    stroke_cubic(p1);
}

static void check_close(skiatest::Reporter* reporter, const SkPath& path) {
    for (int i = 0; i < 2; ++i) {
        SkPath::Iter iter(path, SkToBool(i));
        SkPoint mv;
        SkPoint pts[4];
        SkPath::Verb v;
        int nMT = 0;
        int nCL = 0;
        mv.set(0, 0);
        while (SkPath::kDone_Verb != (v = iter.next(pts))) {
            switch (v) {
                case SkPath::kMove_Verb:
                    mv = pts[0];
                    ++nMT;
                    break;
                case SkPath::kClose_Verb:
                    REPORTER_ASSERT(reporter, mv == pts[0]);
                    ++nCL;
                    break;
                default:
                    break;
            }
        }
        // if we force a close on the interator we should have a close
        // for every moveTo
        REPORTER_ASSERT(reporter, !i || nMT == nCL);
    }
}

static void test_close(skiatest::Reporter* reporter) {
    SkPath closePt;
    closePt.moveTo(0, 0);
    closePt.close();
    check_close(reporter, closePt);

    SkPath openPt;
    openPt.moveTo(0, 0);
    check_close(reporter, openPt);

    SkPath empty;
    check_close(reporter, empty);
    empty.close();
    check_close(reporter, empty);

    SkPath rect;
    rect.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
    check_close(reporter, rect);
    rect.close();
    check_close(reporter, rect);

    SkPath quad;
    quad.quadTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
    check_close(reporter, quad);
    quad.close();
    check_close(reporter, quad);

    SkPath cubic;
    quad.cubicTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1,
                 10*SK_Scalar1, 20 * SK_Scalar1, 20*SK_Scalar1);
    check_close(reporter, cubic);
    cubic.close();
    check_close(reporter, cubic);

    SkPath line;
    line.moveTo(SK_Scalar1, SK_Scalar1);
    line.lineTo(10 * SK_Scalar1, 10*SK_Scalar1);
    check_close(reporter, line);
    line.close();
    check_close(reporter, line);

    SkPath rect2;
    rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
    rect2.close();
    rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
    check_close(reporter, rect2);
    rect2.close();
    check_close(reporter, rect2);

    SkPath oval3;
    oval3.addOval(SkRect::MakeWH(SK_Scalar1*100,SK_Scalar1*100));
    oval3.close();
    oval3.addOval(SkRect::MakeWH(SK_Scalar1*200,SK_Scalar1*200));
    check_close(reporter, oval3);
    oval3.close();
    check_close(reporter, oval3);

    SkPath moves;
    moves.moveTo(SK_Scalar1, SK_Scalar1);
    moves.moveTo(5 * SK_Scalar1, SK_Scalar1);
    moves.moveTo(SK_Scalar1, 10 * SK_Scalar1);
    moves.moveTo(10 *SK_Scalar1, SK_Scalar1);
    check_close(reporter, moves);

    stroke_tiny_cubic();
}

static void check_convexity(skiatest::Reporter* reporter, const SkPath& path,
                            SkPath::Convexity expected) {
    SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path.
    SkPath::Convexity c = copy.getConvexity();
    REPORTER_ASSERT(reporter, c == expected);
}

static void test_convexity2(skiatest::Reporter* reporter) {
    SkPath pt;
    pt.moveTo(0, 0);
    pt.close();
    check_convexity(reporter, pt, SkPath::kConvex_Convexity);
    check_direction(reporter, pt, SkPath::kUnknown_Direction);

    SkPath line;
    line.moveTo(12*SK_Scalar1, 20*SK_Scalar1);
    line.lineTo(-12*SK_Scalar1, -20*SK_Scalar1);
    line.close();
    check_convexity(reporter, line, SkPath::kConvex_Convexity);
    check_direction(reporter, line, SkPath::kUnknown_Direction);

    SkPath triLeft;
    triLeft.moveTo(0, 0);
    triLeft.lineTo(SK_Scalar1, 0);
    triLeft.lineTo(SK_Scalar1, SK_Scalar1);
    triLeft.close();
    check_convexity(reporter, triLeft, SkPath::kConvex_Convexity);
    check_direction(reporter, triLeft, SkPath::kCW_Direction);

    SkPath triRight;
    triRight.moveTo(0, 0);
    triRight.lineTo(-SK_Scalar1, 0);
    triRight.lineTo(SK_Scalar1, SK_Scalar1);
    triRight.close();
    check_convexity(reporter, triRight, SkPath::kConvex_Convexity);
    check_direction(reporter, triRight, SkPath::kCCW_Direction);

    SkPath square;
    square.moveTo(0, 0);
    square.lineTo(SK_Scalar1, 0);
    square.lineTo(SK_Scalar1, SK_Scalar1);
    square.lineTo(0, SK_Scalar1);
    square.close();
    check_convexity(reporter, square, SkPath::kConvex_Convexity);
    check_direction(reporter, square, SkPath::kCW_Direction);

    SkPath redundantSquare;
    redundantSquare.moveTo(0, 0);
    redundantSquare.lineTo(0, 0);
    redundantSquare.lineTo(0, 0);
    redundantSquare.lineTo(SK_Scalar1, 0);
    redundantSquare.lineTo(SK_Scalar1, 0);
    redundantSquare.lineTo(SK_Scalar1, 0);
    redundantSquare.lineTo(SK_Scalar1, SK_Scalar1);
    redundantSquare.lineTo(SK_Scalar1, SK_Scalar1);
    redundantSquare.lineTo(SK_Scalar1, SK_Scalar1);
    redundantSquare.lineTo(0, SK_Scalar1);
    redundantSquare.lineTo(0, SK_Scalar1);
    redundantSquare.lineTo(0, SK_Scalar1);
    redundantSquare.close();
    check_convexity(reporter, redundantSquare, SkPath::kConvex_Convexity);
    check_direction(reporter, redundantSquare, SkPath::kCW_Direction);

    SkPath bowTie;
    bowTie.moveTo(0, 0);
    bowTie.lineTo(0, 0);
    bowTie.lineTo(0, 0);
    bowTie.lineTo(SK_Scalar1, SK_Scalar1);
    bowTie.lineTo(SK_Scalar1, SK_Scalar1);
    bowTie.lineTo(SK_Scalar1, SK_Scalar1);
    bowTie.lineTo(SK_Scalar1, 0);
    bowTie.lineTo(SK_Scalar1, 0);
    bowTie.lineTo(SK_Scalar1, 0);
    bowTie.lineTo(0, SK_Scalar1);
    bowTie.lineTo(0, SK_Scalar1);
    bowTie.lineTo(0, SK_Scalar1);
    bowTie.close();
    check_convexity(reporter, bowTie, SkPath::kConcave_Convexity);
    check_direction(reporter, bowTie, kDontCheckDir);

    SkPath spiral;
    spiral.moveTo(0, 0);
    spiral.lineTo(100*SK_Scalar1, 0);
    spiral.lineTo(100*SK_Scalar1, 100*SK_Scalar1);
    spiral.lineTo(0, 100*SK_Scalar1);
    spiral.lineTo(0, 50*SK_Scalar1);
    spiral.lineTo(50*SK_Scalar1, 50*SK_Scalar1);
    spiral.lineTo(50*SK_Scalar1, 75*SK_Scalar1);
    spiral.close();
    check_convexity(reporter, spiral, SkPath::kConcave_Convexity);
    check_direction(reporter, spiral, kDontCheckDir);

    SkPath dent;
    dent.moveTo(0, 0);
    dent.lineTo(100*SK_Scalar1, 100*SK_Scalar1);
    dent.lineTo(0, 100*SK_Scalar1);
    dent.lineTo(-50*SK_Scalar1, 200*SK_Scalar1);
    dent.lineTo(-200*SK_Scalar1, 100*SK_Scalar1);
    dent.close();
    check_convexity(reporter, dent, SkPath::kConcave_Convexity);
    check_direction(reporter, dent, SkPath::kCW_Direction);
}

static void check_convex_bounds(skiatest::Reporter* reporter, const SkPath& p,
                                const SkRect& bounds) {
    REPORTER_ASSERT(reporter, p.isConvex());
    REPORTER_ASSERT(reporter, p.getBounds() == bounds);

    SkPath p2(p);
    REPORTER_ASSERT(reporter, p2.isConvex());
    REPORTER_ASSERT(reporter, p2.getBounds() == bounds);

    SkPath other;
    other.swap(p2);
    REPORTER_ASSERT(reporter, other.isConvex());
    REPORTER_ASSERT(reporter, other.getBounds() == bounds);
}

static void setFromString(SkPath* path, const char str[]) {
    bool first = true;
    while (str) {
        SkScalar x, y;
        str = SkParse::FindScalar(str, &x);
        if (NULL == str) {
            break;
        }
        str = SkParse::FindScalar(str, &y);
        SkASSERT(str);
        if (first) {
            path->moveTo(x, y);
            first = false;
        } else {
            path->lineTo(x, y);
        }
    }
}

static void test_convexity(skiatest::Reporter* reporter) {
    SkPath path;

    check_convexity(reporter, path, SkPath::kConvex_Convexity);
    path.addCircle(0, 0, SkIntToScalar(10));
    check_convexity(reporter, path, SkPath::kConvex_Convexity);
    path.addCircle(0, 0, SkIntToScalar(10));   // 2nd circle
    check_convexity(reporter, path, SkPath::kConcave_Convexity);

    path.reset();
    path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCCW_Direction);
    check_convexity(reporter, path, SkPath::kConvex_Convexity);
    REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kCCW_Direction));

    path.reset();
    path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCW_Direction);
    check_convexity(reporter, path, SkPath::kConvex_Convexity);
    REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kCW_Direction));

    static const struct {
        const char*         fPathStr;
        SkPath::Convexity   fExpectedConvexity;
        SkPath::Direction   fExpectedDirection;
    } gRec[] = {
        { "", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction },
        { "0 0", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction },
        { "0 0 10 10", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction },
        { "0 0 10 10 20 20 0 0 10 10", SkPath::kConcave_Convexity, SkPath::kUnknown_Direction },
        { "0 0 10 10 10 20", SkPath::kConvex_Convexity, SkPath::kCW_Direction },
        { "0 0 10 10 10 0", SkPath::kConvex_Convexity, SkPath::kCCW_Direction },
        { "0 0 10 10 10 0 0 10", SkPath::kConcave_Convexity, kDontCheckDir },
        { "0 0 10 0 0 10 -10 -10", SkPath::kConcave_Convexity, SkPath::kCW_Direction },
    };

    for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) {
        SkPath path;
        setFromString(&path, gRec[i].fPathStr);
        check_convexity(reporter, path, gRec[i].fExpectedConvexity);
        check_direction(reporter, path, gRec[i].fExpectedDirection);
    }
}

static void test_isLine(skiatest::Reporter* reporter) {
    SkPath path;
    SkPoint pts[2];
    const SkScalar value = SkIntToScalar(5);

    REPORTER_ASSERT(reporter, !path.isLine(NULL));

    // set some non-zero values
    pts[0].set(value, value);
    pts[1].set(value, value);
    REPORTER_ASSERT(reporter, !path.isLine(pts));
    // check that pts was untouched
    REPORTER_ASSERT(reporter, pts[0].equals(value, value));
    REPORTER_ASSERT(reporter, pts[1].equals(value, value));

    const SkScalar moveX = SkIntToScalar(1);
    const SkScalar moveY = SkIntToScalar(2);
    SkASSERT(value != moveX && value != moveY);

    path.moveTo(moveX, moveY);
    REPORTER_ASSERT(reporter, !path.isLine(NULL));
    REPORTER_ASSERT(reporter, !path.isLine(pts));
    // check that pts was untouched
    REPORTER_ASSERT(reporter, pts[0].equals(value, value));
    REPORTER_ASSERT(reporter, pts[1].equals(value, value));

    const SkScalar lineX = SkIntToScalar(2);
    const SkScalar lineY = SkIntToScalar(2);
    SkASSERT(value != lineX && value != lineY);

    path.lineTo(lineX, lineY);
    REPORTER_ASSERT(reporter, path.isLine(NULL));

    REPORTER_ASSERT(reporter, !pts[0].equals(moveX, moveY));
    REPORTER_ASSERT(reporter, !pts[1].equals(lineX, lineY));
    REPORTER_ASSERT(reporter, path.isLine(pts));
    REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY));
    REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY));

    path.lineTo(0, 0);  // too many points/verbs
    REPORTER_ASSERT(reporter, !path.isLine(NULL));
    REPORTER_ASSERT(reporter, !path.isLine(pts));
    REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY));
    REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY));
}

static void test_conservativelyContains(skiatest::Reporter* reporter) {
    SkPath path;

    // kBaseRect is used to construct most our test paths: a rect, a circle, and a round-rect.
    static const SkRect kBaseRect = SkRect::MakeWH(SkIntToScalar(100), SkIntToScalar(100));

    // A circle that bounds kBaseRect (with a significant amount of slop)
    SkScalar circleR = SkMaxScalar(kBaseRect.width(), kBaseRect.height());
    circleR = SkScalarMul(circleR, SkFloatToScalar(1.75f)) / 2;
    static const SkPoint kCircleC = {kBaseRect.centerX(), kBaseRect.centerY()};

    // round-rect radii
    static const SkScalar kRRRadii[] = {SkIntToScalar(5), SkIntToScalar(3)};

    static const struct SUPPRESS_VISIBILITY_WARNING {
        SkRect fQueryRect;
        bool   fInRect;
        bool   fInCircle;
        bool   fInRR;
    } kQueries[] = {
        {kBaseRect, true, true, false},

        // rect well inside of kBaseRect
        {SkRect::MakeLTRB(kBaseRect.fLeft + SkFloatToScalar(0.25f)*kBaseRect.width(),
                          kBaseRect.fTop + SkFloatToScalar(0.25f)*kBaseRect.height(),
                          kBaseRect.fRight - SkFloatToScalar(0.25f)*kBaseRect.width(),
                          kBaseRect.fBottom - SkFloatToScalar(0.25f)*kBaseRect.height()),
                          true, true, true},

        // rects with edges off by one from kBaseRect's edges
        {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop,
                          kBaseRect.width(), kBaseRect.height() + 1),
         false, true, false},
        {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop,
                          kBaseRect.width() + 1, kBaseRect.height()),
         false, true, false},
        {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop,
                          kBaseRect.width() + 1, kBaseRect.height() + 1),
         false, true, false},
        {SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop,
                          kBaseRect.width(), kBaseRect.height()),
         false, true, false},
        {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1,
                          kBaseRect.width(), kBaseRect.height()),
         false, true, false},
        {SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop,
                          kBaseRect.width() + 2, kBaseRect.height()),
         false, true, false},
        {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1,
                          kBaseRect.width() + 2, kBaseRect.height()),
         false, true, false},

        // zero-w/h rects at each corner of kBaseRect
        {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, 0, 0), true, true, false},
        {SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fTop, 0, 0), true, true, false},
        {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fBottom, 0, 0), true, true, false},
        {SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fBottom, 0, 0), true, true, false},

        // far away rect
        {SkRect::MakeXYWH(10 * kBaseRect.fRight, 10 * kBaseRect.fBottom,
                          SkIntToScalar(10), SkIntToScalar(10)),
         false, false, false},

        // very large rect containing kBaseRect
        {SkRect::MakeXYWH(kBaseRect.fLeft - 5 * kBaseRect.width(),
                          kBaseRect.fTop - 5 * kBaseRect.height(),
                          11 * kBaseRect.width(), 11 * kBaseRect.height()),
         false, false, false},

        // skinny rect that spans same y-range as kBaseRect
        {SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop,
                          SkIntToScalar(1), kBaseRect.height()),
         true, true, true},

        // short rect that spans same x-range as kBaseRect
        {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(), kBaseRect.width(), SkScalar(1)),
         true, true, true},

        // skinny rect that spans slightly larger y-range than kBaseRect
        {SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop,
                          SkIntToScalar(1), kBaseRect.height() + 1),
         false, true, false},

        // short rect that spans slightly larger x-range than kBaseRect
        {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(),
                          kBaseRect.width() + 1, SkScalar(1)),
         false, true, false},
    };

    for (int inv = 0; inv < 4; ++inv) {
        for (size_t q = 0; q < SK_ARRAY_COUNT(kQueries); ++q) {
            SkRect qRect = kQueries[q].fQueryRect;
            if (inv & 0x1) {
                SkTSwap(qRect.fLeft, qRect.fRight);
            }
            if (inv & 0x2) {
                SkTSwap(qRect.fTop, qRect.fBottom);
            }
            for (int d = 0; d < 2; ++d) {
                SkPath::Direction dir = d ? SkPath::kCCW_Direction : SkPath::kCW_Direction;
                path.reset();
                path.addRect(kBaseRect, dir);
                REPORTER_ASSERT(reporter, kQueries[q].fInRect ==
                                          path.conservativelyContainsRect(qRect));

                path.reset();
                path.addCircle(kCircleC.fX, kCircleC.fY, circleR, dir);
                REPORTER_ASSERT(reporter, kQueries[q].fInCircle ==
                                          path.conservativelyContainsRect(qRect));

                path.reset();
                path.addRoundRect(kBaseRect, kRRRadii[0], kRRRadii[1], dir);
                REPORTER_ASSERT(reporter, kQueries[q].fInRR ==
                                          path.conservativelyContainsRect(qRect));
            }
            // Slightly non-convex shape, shouldn't contain any rects.
            path.reset();
            path.moveTo(0, 0);
            path.lineTo(SkIntToScalar(50), SkFloatToScalar(0.05f));
            path.lineTo(SkIntToScalar(100), 0);
            path.lineTo(SkIntToScalar(100), SkIntToScalar(100));
            path.lineTo(0, SkIntToScalar(100));
            path.close();
            REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(qRect));
        }
    }

    // make sure a minimal convex shape works, a right tri with edges along pos x and y axes.
    path.reset();
    path.moveTo(0, 0);
    path.lineTo(SkIntToScalar(100), 0);
    path.lineTo(0, SkIntToScalar(100));

    // inside, on along top edge
    REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0,
                                                                               SkIntToScalar(10),
                                                                               SkIntToScalar(10))));
    // above
    REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(
        SkRect::MakeXYWH(SkIntToScalar(50),
                         SkIntToScalar(-10),
                         SkIntToScalar(10),
                         SkIntToScalar(10))));
    // to the left
    REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(-10),
                                                                                SkIntToScalar(5),
                                                                                SkIntToScalar(5),
                                                                                SkIntToScalar(5))));

    // outside the diagonal edge
    REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(10),
                                                                                SkIntToScalar(200),
                                                                                SkIntToScalar(20),
                                                                                SkIntToScalar(5))));
}

// Simple isRect test is inline TestPath, below.
// test_isRect provides more extensive testing.
static void test_isRect(skiatest::Reporter* reporter) {
    // passing tests (all moveTo / lineTo...
    SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}};
    SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}};
    SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}};
    SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}};
    SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}};
    SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
    SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}};
    SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}};
    SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
    SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f},
        {1, 0}, {.5f, 0}};
    SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1},
        {0, 1}, {0, .5f}};
    SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}};
    SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}};
    SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}};
    SkPoint rf[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}};

    // failing tests
    SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points
    SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal
    SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps
    SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up
    SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots
    SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots
    SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots
    SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L'
    SkPoint f9[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}, {2, 0}}; // overlaps
    SkPoint fa[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, -1}, {1, -1}}; // non colinear gap
    SkPoint fb[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 1}}; // falls short

    // failing, no close
    SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match
    SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto

    size_t testLen[] = {
        sizeof(r1), sizeof(r2), sizeof(r3), sizeof(r4), sizeof(r5), sizeof(r6),
        sizeof(r7), sizeof(r8), sizeof(r9), sizeof(ra), sizeof(rb), sizeof(rc),
        sizeof(rd), sizeof(re), sizeof(rf),
        sizeof(f1), sizeof(f2), sizeof(f3), sizeof(f4), sizeof(f5), sizeof(f6),
        sizeof(f7), sizeof(f8), sizeof(f9), sizeof(fa), sizeof(fb),
        sizeof(c1), sizeof(c2)
    };
    SkPoint* tests[] = {
        r1, r2, r3, r4, r5, r6, r7, r8, r9, ra, rb, rc, rd, re, rf,
        f1, f2, f3, f4, f5, f6, f7, f8, f9, fa, fb,
        c1, c2
    };
    SkPoint* lastPass = rf;
    SkPoint* lastClose = fb;
    bool fail = false;
    bool close = true;
    const size_t testCount = sizeof(tests) / sizeof(tests[0]);
    size_t index;
    for (size_t testIndex = 0; testIndex < testCount; ++testIndex) {
        SkPath path;
        path.moveTo(tests[testIndex][0].fX, tests[testIndex][0].fY);
        for (index = 1; index < testLen[testIndex] / sizeof(SkPoint); ++index) {
            path.lineTo(tests[testIndex][index].fX, tests[testIndex][index].fY);
        }
        if (close) {
            path.close();
        }
        REPORTER_ASSERT(reporter, fail ^ path.isRect(0));
        REPORTER_ASSERT(reporter, fail ^ path.isRect(NULL, NULL));

        if (!fail) {
            SkRect computed, expected;
            expected.set(tests[testIndex], testLen[testIndex] / sizeof(SkPoint));
            REPORTER_ASSERT(reporter, path.isRect(&computed));
            REPORTER_ASSERT(reporter, expected == computed);

            bool isClosed;
            SkPath::Direction direction, cheapDirection;
            REPORTER_ASSERT(reporter, path.cheapComputeDirection(&cheapDirection));
            REPORTER_ASSERT(reporter, path.isRect(&isClosed, &direction));
            REPORTER_ASSERT(reporter, isClosed == close);
            REPORTER_ASSERT(reporter, direction == cheapDirection);
        } else {
            SkRect computed;
            computed.set(123, 456, 789, 1011);
            REPORTER_ASSERT(reporter, !path.isRect(&computed));
            REPORTER_ASSERT(reporter, computed.fLeft == 123 && computed.fTop == 456);
            REPORTER_ASSERT(reporter, computed.fRight == 789 && computed.fBottom == 1011);

            bool isClosed = (bool) -1;
            SkPath::Direction direction = (SkPath::Direction) -1;
            REPORTER_ASSERT(reporter, !path.isRect(&isClosed, &direction));
            REPORTER_ASSERT(reporter, isClosed == (bool) -1);
            REPORTER_ASSERT(reporter, direction == (SkPath::Direction) -1);
        }

        if (tests[testIndex] == lastPass) {
            fail = true;
        }
        if (tests[testIndex] == lastClose) {
            close = false;
        }
    }

    // fail, close then line
    SkPath path1;
    path1.moveTo(r1[0].fX, r1[0].fY);
    for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
        path1.lineTo(r1[index].fX, r1[index].fY);
    }
    path1.close();
    path1.lineTo(1, 0);
    REPORTER_ASSERT(reporter, fail ^ path1.isRect(0));

    // fail, move in the middle
    path1.reset();
    path1.moveTo(r1[0].fX, r1[0].fY);
    for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
        if (index == 2) {
            path1.moveTo(1, .5f);
        }
        path1.lineTo(r1[index].fX, r1[index].fY);
    }
    path1.close();
    REPORTER_ASSERT(reporter, fail ^ path1.isRect(0));

    // fail, move on the edge
    path1.reset();
    for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
        path1.moveTo(r1[index - 1].fX, r1[index - 1].fY);
        path1.lineTo(r1[index].fX, r1[index].fY);
    }
    path1.close();
    REPORTER_ASSERT(reporter, fail ^ path1.isRect(0));

    // fail, quad
    path1.reset();
    path1.moveTo(r1[0].fX, r1[0].fY);
    for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
        if (index == 2) {
            path1.quadTo(1, .5f, 1, .5f);
        }
        path1.lineTo(r1[index].fX, r1[index].fY);
    }
    path1.close();
    REPORTER_ASSERT(reporter, fail ^ path1.isRect(0));

    // fail, cubic
    path1.reset();
    path1.moveTo(r1[0].fX, r1[0].fY);
    for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
        if (index == 2) {
            path1.cubicTo(1, .5f, 1, .5f, 1, .5f);
        }
        path1.lineTo(r1[index].fX, r1[index].fY);
    }
    path1.close();
    REPORTER_ASSERT(reporter, fail ^ path1.isRect(0));
}

static void test_isNestedRects(skiatest::Reporter* reporter) {
    // passing tests (all moveTo / lineTo...
    SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}};
    SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}};
    SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}};
    SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}};
    SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}};
    SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
    SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}};
    SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}};
    SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
    SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f},
        {1, 0}, {.5f, 0}};
    SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1},
        {0, 1}, {0, .5f}};
    SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}};
    SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}};
    SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}};

    // failing tests
    SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points
    SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal
    SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps
    SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up
    SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots
    SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots
    SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots
    SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L'

    // failing, no close
    SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match
    SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto

    size_t testLen[] = {
        sizeof(r1), sizeof(r2), sizeof(r3), sizeof(r4), sizeof(r5), sizeof(r6),
        sizeof(r7), sizeof(r8), sizeof(r9), sizeof(ra), sizeof(rb), sizeof(rc),
        sizeof(rd), sizeof(re),
        sizeof(f1), sizeof(f2), sizeof(f3), sizeof(f4), sizeof(f5), sizeof(f6),
        sizeof(f7), sizeof(f8),
        sizeof(c1), sizeof(c2)
    };
    SkPoint* tests[] = {
        r1, r2, r3, r4, r5, r6, r7, r8, r9, ra, rb, rc, rd, re,
        f1, f2, f3, f4, f5, f6, f7, f8,
        c1, c2
    };
    const SkPoint* lastPass = re;
    const SkPoint* lastClose = f8;
    const size_t testCount = sizeof(tests) / sizeof(tests[0]);
    size_t index;
    for (int rectFirst = 0; rectFirst <= 1; ++rectFirst) {
        bool fail = false;
        bool close = true;
        for (size_t testIndex = 0; testIndex < testCount; ++testIndex) {
            SkPath path;
            if (rectFirst) {
                path.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
            }
            path.moveTo(tests[testIndex][0].fX, tests[testIndex][0].fY);
            for (index = 1; index < testLen[testIndex] / sizeof(SkPoint); ++index) {
                path.lineTo(tests[testIndex][index].fX, tests[testIndex][index].fY);
            }
            if (close) {
                path.close();
            }
            if (!rectFirst) {
                path.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
            }
            REPORTER_ASSERT(reporter, fail ^ path.isNestedRects(0));
            if (!fail) {
                SkRect expected[2], computed[2];
                SkRect testBounds;
                testBounds.set(tests[testIndex], testLen[testIndex] / sizeof(SkPoint));
                expected[0] = SkRect::MakeLTRB(-1, -1, 2, 2);
                expected[1] = testBounds;
                REPORTER_ASSERT(reporter, path.isNestedRects(computed));
                REPORTER_ASSERT(reporter, expected[0] == computed[0]);
                REPORTER_ASSERT(reporter, expected[1] == computed[1]);
            }
            if (tests[testIndex] == lastPass) {
                fail = true;
            }
            if (tests[testIndex] == lastClose) {
                close = false;
            }
        }

        // fail, close then line
        SkPath path1;
        if (rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
        }
        path1.moveTo(r1[0].fX, r1[0].fY);
        for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
            path1.lineTo(r1[index].fX, r1[index].fY);
        }
        path1.close();
        path1.lineTo(1, 0);
        if (!rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
        }
        REPORTER_ASSERT(reporter, fail ^ path1.isNestedRects(0));

        // fail, move in the middle
        path1.reset();
        if (rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
        }
        path1.moveTo(r1[0].fX, r1[0].fY);
        for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
            if (index == 2) {
                path1.moveTo(1, .5f);
            }
            path1.lineTo(r1[index].fX, r1[index].fY);
        }
        path1.close();
        if (!rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
        }
        REPORTER_ASSERT(reporter, fail ^ path1.isNestedRects(0));

        // fail, move on the edge
        path1.reset();
        if (rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
        }
        for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
            path1.moveTo(r1[index - 1].fX, r1[index - 1].fY);
            path1.lineTo(r1[index].fX, r1[index].fY);
        }
        path1.close();
        if (!rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
        }
        REPORTER_ASSERT(reporter, fail ^ path1.isNestedRects(0));

        // fail, quad
        path1.reset();
        if (rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
        }
        path1.moveTo(r1[0].fX, r1[0].fY);
        for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
            if (index == 2) {
                path1.quadTo(1, .5f, 1, .5f);
            }
            path1.lineTo(r1[index].fX, r1[index].fY);
        }
        path1.close();
        if (!rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
        }
        REPORTER_ASSERT(reporter, fail ^ path1.isNestedRects(0));

        // fail, cubic
        path1.reset();
        if (rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
        }
        path1.moveTo(r1[0].fX, r1[0].fY);
        for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
            if (index == 2) {
                path1.cubicTo(1, .5f, 1, .5f, 1, .5f);
            }
            path1.lineTo(r1[index].fX, r1[index].fY);
        }
        path1.close();
        if (!rectFirst) {
            path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
        }
        REPORTER_ASSERT(reporter, fail ^ path1.isNestedRects(0));

        // fail,  not nested
        path1.reset();
        path1.addRect(1, 1, 3, 3, SkPath::kCW_Direction);
        path1.addRect(2, 2, 4, 4, SkPath::kCW_Direction);
        REPORTER_ASSERT(reporter, fail ^ path1.isNestedRects(0));
    }

    // pass, stroke rect
    SkPath src, dst;
    src.addRect(1, 1, 7, 7, SkPath::kCW_Direction);
    SkPaint strokePaint;
    strokePaint.setStyle(SkPaint::kStroke_Style);
    strokePaint.setStrokeWidth(2);
    strokePaint.getFillPath(src, &dst);
    REPORTER_ASSERT(reporter, dst.isNestedRects(0));
}

static void write_and_read_back(skiatest::Reporter* reporter,
                                const SkPath& p) {
    SkWriter32 writer(100);
    writer.writePath(p);
    size_t size = writer.size();
    SkAutoMalloc storage(size);
    writer.flatten(storage.get());
    SkReader32 reader(storage.get(), size);

    SkPath readBack;
    REPORTER_ASSERT(reporter, readBack != p);
    reader.readPath(&readBack);
    REPORTER_ASSERT(reporter, readBack == p);

    REPORTER_ASSERT(reporter, readBack.getConvexityOrUnknown() ==
                              p.getConvexityOrUnknown());

    REPORTER_ASSERT(reporter, readBack.isOval(NULL) == p.isOval(NULL));

    const SkRect& origBounds = p.getBounds();
    const SkRect& readBackBounds = readBack.getBounds();

    REPORTER_ASSERT(reporter, origBounds == readBackBounds);
}

static void test_flattening(skiatest::Reporter* reporter) {
    SkPath p;

    static const SkPoint pts[] = {
        { 0, 0 },
        { SkIntToScalar(10), SkIntToScalar(10) },
        { SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 },
        { 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) }
    };
    p.moveTo(pts[0]);
    p.lineTo(pts[1]);
    p.quadTo(pts[2], pts[3]);
    p.cubicTo(pts[4], pts[5], pts[6]);

    write_and_read_back(reporter, p);

    // create a buffer that should be much larger than the path so we don't
    // kill our stack if writer goes too far.
    char buffer[1024];
    uint32_t size1 = p.writeToMemory(NULL);
    uint32_t size2 = p.writeToMemory(buffer);
    REPORTER_ASSERT(reporter, size1 == size2);

    SkPath p2;
    uint32_t size3 = p2.readFromMemory(buffer);
    REPORTER_ASSERT(reporter, size1 == size3);
    REPORTER_ASSERT(reporter, p == p2);

    char buffer2[1024];
    size3 = p2.writeToMemory(buffer2);
    REPORTER_ASSERT(reporter, size1 == size3);
    REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0);

    // test persistence of the oval flag & convexity
    {
        SkPath oval;
        SkRect rect = SkRect::MakeWH(10, 10);
        oval.addOval(rect);

        write_and_read_back(reporter, oval);
    }
}

static void test_transform(skiatest::Reporter* reporter) {
    SkPath p, p1;

    static const SkPoint pts[] = {
        { 0, 0 },
        { SkIntToScalar(10), SkIntToScalar(10) },
        { SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 },
        { 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) }
    };
    p.moveTo(pts[0]);
    p.lineTo(pts[1]);
    p.quadTo(pts[2], pts[3]);
    p.cubicTo(pts[4], pts[5], pts[6]);

    SkMatrix matrix;
    matrix.reset();
    p.transform(matrix, &p1);
    REPORTER_ASSERT(reporter, p == p1);

    matrix.setScale(SK_Scalar1 * 2, SK_Scalar1 * 3);
    p.transform(matrix, &p1);
    SkPoint pts1[7];
    int count = p1.getPoints(pts1, 7);
    REPORTER_ASSERT(reporter, 7 == count);
    for (int i = 0; i < count; ++i) {
        SkPoint newPt = SkPoint::Make(pts[i].fX * 2, pts[i].fY * 3);
        REPORTER_ASSERT(reporter, newPt == pts1[i]);
    }
}

static void test_zero_length_paths(skiatest::Reporter* reporter) {
    SkPath  p;
    uint8_t verbs[32];

    struct SUPPRESS_VISIBILITY_WARNING zeroPathTestData {
        const char* testPath;
        const size_t numResultPts;
        const SkRect resultBound;
        const SkPath::Verb* resultVerbs;
        const size_t numResultVerbs;
    };

    static const SkPath::Verb resultVerbs1[] = { SkPath::kMove_Verb };
    static const SkPath::Verb resultVerbs2[] = { SkPath::kMove_Verb, SkPath::kMove_Verb };
    static const SkPath::Verb resultVerbs3[] = { SkPath::kMove_Verb, SkPath::kClose_Verb };
    static const SkPath::Verb resultVerbs4[] = { SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb };
    static const SkPath::Verb resultVerbs5[] = { SkPath::kMove_Verb, SkPath::kLine_Verb };
    static const SkPath::Verb resultVerbs6[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb };
    static const SkPath::Verb resultVerbs7[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb };
    static const SkPath::Verb resultVerbs8[] = {
        SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb
    };
    static const SkPath::Verb resultVerbs9[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb };
    static const SkPath::Verb resultVerbs10[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb };
    static const SkPath::Verb resultVerbs11[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb };
    static const SkPath::Verb resultVerbs12[] = {
        SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb
    };
    static const SkPath::Verb resultVerbs13[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb };
    static const SkPath::Verb resultVerbs14[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb };
    static const SkPath::Verb resultVerbs15[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb };
    static const SkPath::Verb resultVerbs16[] = {
        SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb
    };
    static const struct zeroPathTestData gZeroLengthTests[] = {
        { "M 1 1", 1, {0, 0, 0, 0}, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "M 1 1 M 2 1", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) },
        { "M 1 1 z", 1, {0, 0, 0, 0}, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) },
        { "M 1 1 z M 2 1 z", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) },
        { "M 1 1 L 1 1", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) },
        { "M 1 1 L 1 1 M 2 1 L 2 1", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs6, SK_ARRAY_COUNT(resultVerbs6) },
        { "M 1 1 L 1 1 z", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs7, SK_ARRAY_COUNT(resultVerbs7) },
        { "M 1 1 L 1 1 z M 2 1 L 2 1 z", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs8, SK_ARRAY_COUNT(resultVerbs8) },
        { "M 1 1 Q 1 1 1 1", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs9, SK_ARRAY_COUNT(resultVerbs9) },
        { "M 1 1 Q 1 1 1 1 M 2 1 Q 2 1 2 1", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs10, SK_ARRAY_COUNT(resultVerbs10) },
        { "M 1 1 Q 1 1 1 1 z", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs11, SK_ARRAY_COUNT(resultVerbs11) },
        { "M 1 1 Q 1 1 1 1 z M 2 1 Q 2 1 2 1 z", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs12, SK_ARRAY_COUNT(resultVerbs12) },
        { "M 1 1 C 1 1 1 1 1 1", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs13, SK_ARRAY_COUNT(resultVerbs13) },
        { "M 1 1 C 1 1 1 1 1 1 M 2 1 C 2 1 2 1 2 1", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs14,
            SK_ARRAY_COUNT(resultVerbs14)
        },
        { "M 1 1 C 1 1 1 1 1 1 z", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs15, SK_ARRAY_COUNT(resultVerbs15) },
        { "M 1 1 C 1 1 1 1 1 1 z M 2 1 C 2 1 2 1 2 1 z", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs16,
            SK_ARRAY_COUNT(resultVerbs16)
        }
    };

    for (size_t i = 0; i < SK_ARRAY_COUNT(gZeroLengthTests); ++i) {
        p.reset();
        bool valid = SkParsePath::FromSVGString(gZeroLengthTests[i].testPath, &p);
        REPORTER_ASSERT(reporter, valid);
        REPORTER_ASSERT(reporter, !p.isEmpty());
        REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultPts == (size_t)p.countPoints());
        REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultBound == p.getBounds());
        REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultVerbs == (size_t)p.getVerbs(verbs, SK_ARRAY_COUNT(verbs)));
        for (size_t j = 0; j < gZeroLengthTests[i].numResultVerbs; ++j) {
            REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultVerbs[j] == verbs[j]);
        }
    }
}

struct SegmentInfo {
    SkPath fPath;
    int    fPointCount;
};

#define kCurveSegmentMask   (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask)

static void test_segment_masks(skiatest::Reporter* reporter) {
    SkPath p, p2;

    p.moveTo(0, 0);
    p.quadTo(100, 100, 200, 200);
    REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == p.getSegmentMasks());
    REPORTER_ASSERT(reporter, !p.isEmpty());
    p2 = p;
    REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks());
    p.cubicTo(100, 100, 200, 200, 300, 300);
    REPORTER_ASSERT(reporter, kCurveSegmentMask == p.getSegmentMasks());
    REPORTER_ASSERT(reporter, !p.isEmpty());
    p2 = p;
    REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks());

    p.reset();
    p.moveTo(0, 0);
    p.cubicTo(100, 100, 200, 200, 300, 300);
    REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == p.getSegmentMasks());
    p2 = p;
    REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks());

    REPORTER_ASSERT(reporter, !p.isEmpty());
}

static void test_iter(skiatest::Reporter* reporter) {
    SkPath  p;
    SkPoint pts[4];

    // Test an iterator with no path
    SkPath::Iter noPathIter;
    REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);

    // Test that setting an empty path works
    noPathIter.setPath(p, false);
    REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);

    // Test that close path makes no difference for an empty path
    noPathIter.setPath(p, true);
    REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);

    // Test an iterator with an initial empty path
    SkPath::Iter iter(p, false);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);

    // Test that close path makes no difference
    iter.setPath(p, true);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);


    struct iterTestData {
        const char* testPath;
        const bool forceClose;
        const bool consumeDegenerates;
        const size_t* numResultPtsPerVerb;
        const SkPoint* resultPts;
        const SkPath::Verb* resultVerbs;
        const size_t numResultVerbs;
    };

    static const SkPath::Verb resultVerbs1[] = { SkPath::kDone_Verb };
    static const SkPath::Verb resultVerbs2[] = {
        SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kDone_Verb
    };
    static const SkPath::Verb resultVerbs3[] = {
        SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb
    };
    static const SkPath::Verb resultVerbs4[] = {
        SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb
    };
    static const SkPath::Verb resultVerbs5[] = {
        SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb
    };
    static const size_t resultPtsSizes1[] = { 0 };
    static const size_t resultPtsSizes2[] = { 1, 2, 2, 0 };
    static const size_t resultPtsSizes3[] = { 1, 2, 2, 2, 1, 0 };
    static const size_t resultPtsSizes4[] = { 1, 2, 1, 1, 0 };
    static const size_t resultPtsSizes5[] = { 1, 2, 1, 1, 1, 0 };
    static const SkPoint* resultPts1 = 0;
    static const SkPoint resultPts2[] = {
        { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, SK_Scalar1 }, { SK_Scalar1, SK_Scalar1 }, { 0, SK_Scalar1 }
    };
    static const SkPoint resultPts3[] = {
        { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, SK_Scalar1 }, { SK_Scalar1, SK_Scalar1 }, { 0, SK_Scalar1 },
        { 0, SK_Scalar1 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }
    };
    static const SkPoint resultPts4[] = {
        { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 }
    };
    static const SkPoint resultPts5[] = {
        { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 }
    };
    static const struct iterTestData gIterTests[] = {
        { "M 1 0", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "M 1 0 M 2 0 M 3 0 M 4 0 M 5 0", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "M 1 0 M 1 0 M 3 0 M 4 0 M 5 0", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "z M 1 0 z z M 2 0 z M 3 0 M 4 0 z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "z M 1 0 z z M 2 0 z M 3 0 M 4 0 z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "M 1 0 L 1 1 L 0 1 M 0 0 z", false, true, resultPtsSizes2, resultPts2, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) },
        { "M 1 0 L 1 1 L 0 1 M 0 0 z", true, true, resultPtsSizes3, resultPts3, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) },
        { "M 1 0 L 1 0 M 0 0 z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "M 1 0 L 1 0 M 0 0 z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
        { "M 1 0 L 1 0 M 0 0 z", false, false, resultPtsSizes4, resultPts4, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) },
        { "M 1 0 L 1 0 M 0 0 z", true, false, resultPtsSizes5, resultPts5, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) }
    };

    for (size_t i = 0; i < SK_ARRAY_COUNT(gIterTests); ++i) {
        p.reset();
        bool valid = SkParsePath::FromSVGString(gIterTests[i].testPath, &p);
        REPORTER_ASSERT(reporter, valid);
        iter.setPath(p, gIterTests[i].forceClose);
        int j = 0, l = 0;
        do {
            REPORTER_ASSERT(reporter, iter.next(pts, gIterTests[i].consumeDegenerates) == gIterTests[i].resultVerbs[j]);
            for (int k = 0; k < (int)gIterTests[i].numResultPtsPerVerb[j]; ++k) {
                REPORTER_ASSERT(reporter, pts[k] == gIterTests[i].resultPts[l++]);
            }
        } while (gIterTests[i].resultVerbs[j++] != SkPath::kDone_Verb);
        REPORTER_ASSERT(reporter, j == (int)gIterTests[i].numResultVerbs);
    }

    // The GM degeneratesegments.cpp test is more extensive
}

static void test_raw_iter(skiatest::Reporter* reporter) {
    SkPath p;
    SkPoint pts[4];

    // Test an iterator with no path
    SkPath::RawIter noPathIter;
    REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
    // Test that setting an empty path works
    noPathIter.setPath(p);
    REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);

    // Test an iterator with an initial empty path
    SkPath::RawIter iter(p);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);

    // Test that a move-only path returns the move.
    p.moveTo(SK_Scalar1, 0);
    iter.setPath(p);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
    REPORTER_ASSERT(reporter, pts[0].fY == 0);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);

    // No matter how many moves we add, we should get them all back
    p.moveTo(SK_Scalar1*2, SK_Scalar1);
    p.moveTo(SK_Scalar1*3, SK_Scalar1*2);
    iter.setPath(p);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
    REPORTER_ASSERT(reporter, pts[0].fY == 0);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2);
    REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3);
    REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);

    // Initial close is never ever stored
    p.reset();
    p.close();
    iter.setPath(p);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);

    // Move/close sequences
    p.reset();
    p.close(); // Not stored, no purpose
    p.moveTo(SK_Scalar1, 0);
    p.close();
    p.close(); // Not stored, no purpose
    p.moveTo(SK_Scalar1*2, SK_Scalar1);
    p.close();
    p.moveTo(SK_Scalar1*3, SK_Scalar1*2);
    p.moveTo(SK_Scalar1*4, SK_Scalar1*3);
    p.close();
    iter.setPath(p);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
    REPORTER_ASSERT(reporter, pts[0].fY == 0);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
    REPORTER_ASSERT(reporter, pts[0].fY == 0);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2);
    REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2);
    REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3);
    REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4);
    REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb);
    REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4);
    REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3);
    REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);

    // Generate random paths and verify
    SkPoint randomPts[25];
    for (int i = 0; i < 5; ++i) {
        for (int j = 0; j < 5; ++j) {
            randomPts[i*5+j].set(SK_Scalar1*i, SK_Scalar1*j);
        }
    }

    // Max of 10 segments, max 3 points per segment
    SkRandom rand(9876543);
    SkPoint          expectedPts[31]; // May have leading moveTo
    SkPath::Verb     expectedVerbs[22]; // May have leading moveTo
    SkPath::Verb     nextVerb;

    for (int i = 0; i < 500; ++i) {
        p.reset();
        bool lastWasClose = true;
        bool haveMoveTo = false;
        SkPoint lastMoveToPt = { 0, 0 };
        int numPoints = 0;
        int numVerbs = (rand.nextU() >> 16) % 10;
        int numIterVerbs = 0;
        for (int j = 0; j < numVerbs; ++j) {
            do {
                nextVerb = static_cast<SkPath::Verb>((rand.nextU() >> 16) % SkPath::kDone_Verb);
            } while (lastWasClose && nextVerb == SkPath::kClose_Verb);
            switch (nextVerb) {
                case SkPath::kMove_Verb:
                    expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
                    p.moveTo(expectedPts[numPoints]);
                    lastMoveToPt = expectedPts[numPoints];
                    numPoints += 1;
                    lastWasClose = false;
                    haveMoveTo = true;
                    break;
                case SkPath::kLine_Verb:
                    if (!haveMoveTo) {
                        expectedPts[numPoints++] = lastMoveToPt;
                        expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb;
                        haveMoveTo = true;
                    }
                    expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
                    p.lineTo(expectedPts[numPoints]);
                    numPoints += 1;
                    lastWasClose = false;
                    break;
                case SkPath::kQuad_Verb:
                    if (!haveMoveTo) {
                        expectedPts[numPoints++] = lastMoveToPt;
                        expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb;
                        haveMoveTo = true;
                    }
                    expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
                    expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25];
                    p.quadTo(expectedPts[numPoints], expectedPts[numPoints + 1]);
                    numPoints += 2;
                    lastWasClose = false;
                    break;
                case SkPath::kCubic_Verb:
                    if (!haveMoveTo) {
                        expectedPts[numPoints++] = lastMoveToPt;
                        expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb;
                        haveMoveTo = true;
                    }
                    expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
                    expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25];
                    expectedPts[numPoints + 2] = randomPts[(rand.nextU() >> 16) % 25];
                    p.cubicTo(expectedPts[numPoints], expectedPts[numPoints + 1],
                              expectedPts[numPoints + 2]);
                    numPoints += 3;
                    lastWasClose = false;
                    break;
                case SkPath::kClose_Verb:
                    p.close();
                    haveMoveTo = false;
                    lastWasClose = true;
                    break;
                default:;
            }
            expectedVerbs[numIterVerbs++] = nextVerb;
        }

        iter.setPath(p);
        numVerbs = numIterVerbs;
        numIterVerbs = 0;
        int numIterPts = 0;
        SkPoint lastMoveTo;
        SkPoint lastPt;
        lastMoveTo.set(0, 0);
        lastPt.set(0, 0);
        while ((nextVerb = iter.next(pts)) != SkPath::kDone_Verb) {
            REPORTER_ASSERT(reporter, nextVerb == expectedVerbs[numIterVerbs]);
            numIterVerbs++;
            switch (nextVerb) {
                case SkPath::kMove_Verb:
                    REPORTER_ASSERT(reporter, numIterPts < numPoints);
                    REPORTER_ASSERT(reporter, pts[0] == expectedPts[numIterPts]);
                    lastPt = lastMoveTo = pts[0];
                    numIterPts += 1;
                    break;
                case SkPath::kLine_Verb:
                    REPORTER_ASSERT(reporter, numIterPts < numPoints + 1);
                    REPORTER_ASSERT(reporter, pts[0] == lastPt);
                    REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]);
                    lastPt = pts[1];
                    numIterPts += 1;
                    break;
                case SkPath::kQuad_Verb:
                    REPORTER_ASSERT(reporter, numIterPts < numPoints + 2);
                    REPORTER_ASSERT(reporter, pts[0] == lastPt);
                    REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]);
                    REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]);
                    lastPt = pts[2];
                    numIterPts += 2;
                    break;
                case SkPath::kCubic_Verb:
                    REPORTER_ASSERT(reporter, numIterPts < numPoints + 3);
                    REPORTER_ASSERT(reporter, pts[0] == lastPt);
                    REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]);
                    REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]);
                    REPORTER_ASSERT(reporter, pts[3] == expectedPts[numIterPts + 2]);
                    lastPt = pts[3];
                    numIterPts += 3;
                    break;
                case SkPath::kClose_Verb:
                    REPORTER_ASSERT(reporter, pts[0] == lastMoveTo);
                    lastPt = lastMoveTo;
                    break;
                default:;
            }
        }
        REPORTER_ASSERT(reporter, numIterPts == numPoints);
        REPORTER_ASSERT(reporter, numIterVerbs == numVerbs);
    }
}

static void check_for_circle(skiatest::Reporter* reporter,
                             const SkPath& path,
                             bool expectedCircle,
                             SkPath::Direction expectedDir) {
    SkRect rect;
    REPORTER_ASSERT(reporter, path.isOval(&rect) == expectedCircle);
    REPORTER_ASSERT(reporter, path.cheapIsDirection(expectedDir));

    if (expectedCircle) {
        REPORTER_ASSERT(reporter, rect.height() == rect.width());
    }
}

static void test_circle_skew(skiatest::Reporter* reporter,
                             const SkPath& path,
                             SkPath::Direction dir) {
    SkPath tmp;

    SkMatrix m;
    m.setSkew(SkIntToScalar(3), SkIntToScalar(5));
    path.transform(m, &tmp);
    // this matrix reverses the direction.
    if (SkPath::kCCW_Direction == dir) {
        dir = SkPath::kCW_Direction;
    } else {
        SkASSERT(SkPath::kCW_Direction == dir);
        dir = SkPath::kCCW_Direction;
    }
    check_for_circle(reporter, tmp, false, dir);
}

static void test_circle_translate(skiatest::Reporter* reporter,
                                  const SkPath& path,
                                  SkPath::Direction dir) {
    SkPath tmp;

    // translate at small offset
    SkMatrix m;
    m.setTranslate(SkIntToScalar(15), SkIntToScalar(15));
    path.transform(m, &tmp);
    check_for_circle(reporter, tmp, true, dir);

    tmp.reset();
    m.reset();

    // translate at a relatively big offset
    m.setTranslate(SkIntToScalar(1000), SkIntToScalar(1000));
    path.transform(m, &tmp);
    check_for_circle(reporter, tmp, true, dir);
}

static void test_circle_rotate(skiatest::Reporter* reporter,
                               const SkPath& path,
                               SkPath::Direction dir) {
    for (int angle = 0; angle < 360; ++angle) {
        SkPath tmp;
        SkMatrix m;
        m.setRotate(SkIntToScalar(angle));
        path.transform(m, &tmp);

        // TODO: a rotated circle whose rotated angle is not a multiple of 90
        // degrees is not an oval anymore, this can be improved.  we made this
        // for the simplicity of our implementation.
        if (angle % 90 == 0) {
            check_for_circle(reporter, tmp, true, dir);
        } else {
            check_for_circle(reporter, tmp, false, dir);
        }
    }
}

static void test_circle_mirror_x(skiatest::Reporter* reporter,
                                 const SkPath& path,
                                 SkPath::Direction dir) {
    SkPath tmp;
    SkMatrix m;
    m.reset();
    m.setScaleX(-SK_Scalar1);
    path.transform(m, &tmp);

    if (SkPath::kCW_Direction == dir) {
        dir = SkPath::kCCW_Direction;
    } else {
        SkASSERT(SkPath::kCCW_Direction == dir);
        dir = SkPath::kCW_Direction;
    }

    check_for_circle(reporter, tmp, true, dir);
}

static void test_circle_mirror_y(skiatest::Reporter* reporter,
                                 const SkPath& path,
                                 SkPath::Direction dir) {
    SkPath tmp;
    SkMatrix m;
    m.reset();
    m.setScaleY(-SK_Scalar1);
    path.transform(m, &tmp);

    if (SkPath::kCW_Direction == dir) {
        dir = SkPath::kCCW_Direction;
    } else {
        SkASSERT(SkPath::kCCW_Direction == dir);
        dir = SkPath::kCW_Direction;
    }

    check_for_circle(reporter, tmp, true, dir);
}

static void test_circle_mirror_xy(skiatest::Reporter* reporter,
                                 const SkPath& path,
                                 SkPath::Direction dir) {
    SkPath tmp;
    SkMatrix m;
    m.reset();
    m.setScaleX(-SK_Scalar1);
    m.setScaleY(-SK_Scalar1);
    path.transform(m, &tmp);

    check_for_circle(reporter, tmp, true, dir);
}

static void test_circle_with_direction(skiatest::Reporter* reporter,
                                       SkPath::Direction dir) {
    SkPath path;

    // circle at origin
    path.addCircle(0, 0, SkIntToScalar(20), dir);
    check_for_circle(reporter, path, true, dir);
    test_circle_rotate(reporter, path, dir);
    test_circle_translate(reporter, path, dir);
    test_circle_skew(reporter, path, dir);

    // circle at an offset at (10, 10)
    path.reset();
    path.addCircle(SkIntToScalar(10), SkIntToScalar(10),
                   SkIntToScalar(20), dir);
    check_for_circle(reporter, path, true, dir);
    test_circle_rotate(reporter, path, dir);
    test_circle_translate(reporter, path, dir);
    test_circle_skew(reporter, path, dir);
    test_circle_mirror_x(reporter, path, dir);
    test_circle_mirror_y(reporter, path, dir);
    test_circle_mirror_xy(reporter, path, dir);
}

static void test_circle_with_add_paths(skiatest::Reporter* reporter) {
    SkPath path;
    SkPath circle;
    SkPath rect;
    SkPath empty;

    static const SkPath::Direction kCircleDir = SkPath::kCW_Direction;
    static const SkPath::Direction kCircleDirOpposite = SkPath::kCCW_Direction;

    circle.addCircle(0, 0, SkIntToScalar(10), kCircleDir);
    rect.addRect(SkIntToScalar(5), SkIntToScalar(5),
                 SkIntToScalar(20), SkIntToScalar(20), SkPath::kCW_Direction);

    SkMatrix translate;
    translate.setTranslate(SkIntToScalar(12), SkIntToScalar(12));

    // For simplicity, all the path concatenation related operations
    // would mark it non-circle, though in theory it's still a circle.

    // empty + circle (translate)
    path = empty;
    path.addPath(circle, translate);
    check_for_circle(reporter, path, false, kCircleDir);

    // circle + empty (translate)
    path = circle;
    path.addPath(empty, translate);
    check_for_circle(reporter, path, false, kCircleDir);

    // test reverseAddPath
    path = circle;
    path.reverseAddPath(rect);
    check_for_circle(reporter, path, false, kCircleDirOpposite);
}

static void test_circle(skiatest::Reporter* reporter) {
    test_circle_with_direction(reporter, SkPath::kCW_Direction);
    test_circle_with_direction(reporter, SkPath::kCCW_Direction);

    // multiple addCircle()
    SkPath path;
    path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction);
    path.addCircle(0, 0, SkIntToScalar(20), SkPath::kCW_Direction);
    check_for_circle(reporter, path, false, SkPath::kCW_Direction);

    // some extra lineTo() would make isOval() fail
    path.reset();
    path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction);
    path.lineTo(0, 0);
    check_for_circle(reporter, path, false, SkPath::kCW_Direction);

    // not back to the original point
    path.reset();
    path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction);
    path.setLastPt(SkIntToScalar(5), SkIntToScalar(5));
    check_for_circle(reporter, path, false, SkPath::kCW_Direction);

    test_circle_with_add_paths(reporter);
}

static void test_oval(skiatest::Reporter* reporter) {
    SkRect rect;
    SkMatrix m;
    SkPath path;

    rect = SkRect::MakeWH(SkIntToScalar(30), SkIntToScalar(50));
    path.addOval(rect);

    REPORTER_ASSERT(reporter, path.isOval(NULL));

    m.setRotate(SkIntToScalar(90));
    SkPath tmp;
    path.transform(m, &tmp);
    // an oval rotated 90 degrees is still an oval.
    REPORTER_ASSERT(reporter, tmp.isOval(NULL));

    m.reset();
    m.setRotate(SkIntToScalar(30));
    tmp.reset();
    path.transform(m, &tmp);
    // an oval rotated 30 degrees is not an oval anymore.
    REPORTER_ASSERT(reporter, !tmp.isOval(NULL));

    // since empty path being transformed.
    path.reset();
    tmp.reset();
    m.reset();
    path.transform(m, &tmp);
    REPORTER_ASSERT(reporter, !tmp.isOval(NULL));

    // empty path is not an oval
    tmp.reset();
    REPORTER_ASSERT(reporter, !tmp.isOval(NULL));

    // only has moveTo()s
    tmp.reset();
    tmp.moveTo(0, 0);
    tmp.moveTo(SkIntToScalar(10), SkIntToScalar(10));
    REPORTER_ASSERT(reporter, !tmp.isOval(NULL));

    // mimic WebKit's calling convention,
    // call moveTo() first and then call addOval()
    path.reset();
    path.moveTo(0, 0);
    path.addOval(rect);
    REPORTER_ASSERT(reporter, path.isOval(NULL));

    // copy path
    path.reset();
    tmp.reset();
    tmp.addOval(rect);
    path = tmp;
    REPORTER_ASSERT(reporter, path.isOval(NULL));
}

static void TestPath(skiatest::Reporter* reporter) {
    SkTSize<SkScalar>::Make(3,4);

    SkPath  p, p2;
    SkRect  bounds, bounds2;

    REPORTER_ASSERT(reporter, p.isEmpty());
    REPORTER_ASSERT(reporter, 0 == p.countPoints());
    REPORTER_ASSERT(reporter, 0 == p.countVerbs());
    REPORTER_ASSERT(reporter, 0 == p.getSegmentMasks());
    REPORTER_ASSERT(reporter, p.isConvex());
    REPORTER_ASSERT(reporter, p.getFillType() == SkPath::kWinding_FillType);
    REPORTER_ASSERT(reporter, !p.isInverseFillType());
    REPORTER_ASSERT(reporter, p == p2);
    REPORTER_ASSERT(reporter, !(p != p2));

    REPORTER_ASSERT(reporter, p.getBounds().isEmpty());

    bounds.set(0, 0, SK_Scalar1, SK_Scalar1);

    p.addRoundRect(bounds, SK_Scalar1, SK_Scalar1);
    check_convex_bounds(reporter, p, bounds);
    // we have quads or cubics
    REPORTER_ASSERT(reporter, p.getSegmentMasks() & kCurveSegmentMask);
    REPORTER_ASSERT(reporter, !p.isEmpty());

    p.reset();
    REPORTER_ASSERT(reporter, 0 == p.getSegmentMasks());
    REPORTER_ASSERT(reporter, p.isEmpty());

    p.addOval(bounds);
    check_convex_bounds(reporter, p, bounds);
    REPORTER_ASSERT(reporter, !p.isEmpty());

    p.reset();
    p.addRect(bounds);
    check_convex_bounds(reporter, p, bounds);
    // we have only lines
    REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == p.getSegmentMasks());
    REPORTER_ASSERT(reporter, !p.isEmpty());

    REPORTER_ASSERT(reporter, p != p2);
    REPORTER_ASSERT(reporter, !(p == p2));

    // do getPoints and getVerbs return the right result
    REPORTER_ASSERT(reporter, p.getPoints(NULL, 0) == 4);
    REPORTER_ASSERT(reporter, p.getVerbs(NULL, 0) == 5);
    SkPoint pts[4];
    int count = p.getPoints(pts, 4);
    REPORTER_ASSERT(reporter, count == 4);
    uint8_t verbs[6];
    verbs[5] = 0xff;
    p.getVerbs(verbs, 5);
    REPORTER_ASSERT(reporter, SkPath::kMove_Verb == verbs[0]);
    REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[1]);
    REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[2]);
    REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[3]);
    REPORTER_ASSERT(reporter, SkPath::kClose_Verb == verbs[4]);
    REPORTER_ASSERT(reporter, 0xff == verbs[5]);
    bounds2.set(pts, 4);
    REPORTER_ASSERT(reporter, bounds == bounds2);

    bounds.offset(SK_Scalar1*3, SK_Scalar1*4);
    p.offset(SK_Scalar1*3, SK_Scalar1*4);
    REPORTER_ASSERT(reporter, bounds == p.getBounds());

    REPORTER_ASSERT(reporter, p.isRect(NULL));
    bounds2.setEmpty();
    REPORTER_ASSERT(reporter, p.isRect(&bounds2));
    REPORTER_ASSERT(reporter, bounds == bounds2);

    // now force p to not be a rect
    bounds.set(0, 0, SK_Scalar1/2, SK_Scalar1/2);
    p.addRect(bounds);
    REPORTER_ASSERT(reporter, !p.isRect(NULL));

    test_isLine(reporter);
    test_isRect(reporter);
    test_isNestedRects(reporter);
    test_zero_length_paths(reporter);
    test_direction(reporter);
    test_convexity(reporter);
    test_convexity2(reporter);
    test_conservativelyContains(reporter);
    test_close(reporter);
    test_segment_masks(reporter);
    test_flattening(reporter);
    test_transform(reporter);
    test_bounds(reporter);
    test_iter(reporter);
    test_raw_iter(reporter);
    test_circle(reporter);
    test_oval(reporter);
    test_strokerec(reporter);
    test_addPoly(reporter);
    test_isfinite(reporter);
    test_isfinite_after_transform(reporter);
    test_tricky_cubic(reporter);
    test_arb_round_rect_is_convex(reporter);
    test_arb_zero_rad_round_rect_is_rect(reporter);
    test_addrect_isfinite(reporter);
    test_clipped_cubic(reporter);
}

#include "TestClassDef.h"
DEFINE_TESTCLASS("Path", PathTestClass, TestPath)