aboutsummaryrefslogtreecommitdiffhomepage
path: root/tests/PathOpsTestCommon.cpp
blob: 60a12ee56ec87afcb606e05a6916283502b5e23b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "PathOpsTestCommon.h"
#include "SkPathOpsBounds.h"
#include "SkPathOpsCubic.h"
#include "SkPathOpsLine.h"
#include "SkPathOpsQuad.h"
#include "SkPathOpsTriangle.h"

void CubicToQuads(const SkDCubic& cubic, double precision, SkTArray<SkDQuad, true>& quads) {
    SkTArray<double, true> ts;
    cubic.toQuadraticTs(precision, &ts);
    if (ts.count() <= 0) {
        SkDQuad quad = cubic.toQuad();
        quads.push_back(quad);
        return;
    }
    double tStart = 0;
    for (int i1 = 0; i1 <= ts.count(); ++i1) {
        const double tEnd = i1 < ts.count() ? ts[i1] : 1;
        SkDCubic part = cubic.subDivide(tStart, tEnd);
        SkDQuad quad = part.toQuad();
        quads.push_back(quad);
        tStart = tEnd;
    }
}

void CubicPathToQuads(const SkPath& cubicPath, SkPath* quadPath) {
    quadPath->reset();
    SkDCubic cubic;
    SkTArray<SkDQuad, true> quads;
    SkPath::RawIter iter(cubicPath);
    uint8_t verb;
    SkPoint pts[4];
    while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
        switch (verb) {
            case SkPath::kMove_Verb:
                quadPath->moveTo(pts[0].fX, pts[0].fY);
                continue;
            case SkPath::kLine_Verb:
                quadPath->lineTo(pts[1].fX, pts[1].fY);
                break;
            case SkPath::kQuad_Verb:
                quadPath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
                break;
            case SkPath::kCubic_Verb:
                quads.reset();
                cubic.set(pts);
                CubicToQuads(cubic, cubic.calcPrecision(), quads);
                for (int index = 0; index < quads.count(); ++index) {
                    SkPoint qPts[2] = {
                        quads[index][1].asSkPoint(),
                        quads[index][2].asSkPoint()
                    };
                    quadPath->quadTo(qPts[0].fX, qPts[0].fY, qPts[1].fX, qPts[1].fY);
                }
                break;
            case SkPath::kClose_Verb:
                 quadPath->close();
                break;
            default:
                SkDEBUGFAIL("bad verb");
                return;
        }
    }
}

void CubicPathToSimple(const SkPath& cubicPath, SkPath* simplePath) {
    simplePath->reset();
    SkDCubic cubic;
    SkPath::RawIter iter(cubicPath);
    uint8_t verb;
    SkPoint pts[4];
    while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
        switch (verb) {
            case SkPath::kMove_Verb:
                simplePath->moveTo(pts[0].fX, pts[0].fY);
                continue;
            case SkPath::kLine_Verb:
                simplePath->lineTo(pts[1].fX, pts[1].fY);
                break;
            case SkPath::kQuad_Verb:
                simplePath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
                break;
            case SkPath::kCubic_Verb: {
                cubic.set(pts);
                double tInflects[2];
                int inflections = cubic.findInflections(tInflects);
                if (inflections > 1 && tInflects[0] > tInflects[1]) {
                    SkTSwap(tInflects[0], tInflects[1]);
                }
                double lo = 0;
                for (int index = 0; index <= inflections; ++index) {
                    double hi = index < inflections ? tInflects[index] : 1;
                    SkDCubic part = cubic.subDivide(lo, hi);
                    SkPoint cPts[3];
                    cPts[0] = part[1].asSkPoint();
                    cPts[1] = part[2].asSkPoint();
                    cPts[2] = part[3].asSkPoint();
                    simplePath->cubicTo(cPts[0].fX, cPts[0].fY, cPts[1].fX, cPts[1].fY,
                            cPts[2].fX, cPts[2].fY);
                    lo = hi;
                }
                break;
            } 
            case SkPath::kClose_Verb:
                 simplePath->close();
                break;
            default:
                SkDEBUGFAIL("bad verb");
                return;
        }
    }
}

static bool SkDoubleIsNaN(double x) {
    return x != x;
}

bool ValidBounds(const SkPathOpsBounds& bounds) {
    if (SkScalarIsNaN(bounds.fLeft)) {
        return false;
    }
    if (SkScalarIsNaN(bounds.fTop)) {
        return false;
    }
    if (SkScalarIsNaN(bounds.fRight)) {
        return false;
    }
    return !SkScalarIsNaN(bounds.fBottom);
}

bool ValidCubic(const SkDCubic& cubic) {
    for (int index = 0; index < 4; ++index) {
        if (!ValidPoint(cubic[index])) {
            return false;
        }
    }
    return true;
}

bool ValidLine(const SkDLine& line) {
    for (int index = 0; index < 2; ++index) {
        if (!ValidPoint(line[index])) {
            return false;
        }
    }
    return true;
}

bool ValidPoint(const SkDPoint& pt) {
    if (SkDoubleIsNaN(pt.fX)) {
        return false;
    }
    return !SkDoubleIsNaN(pt.fY);
}

bool ValidPoints(const SkPoint* pts, int count) {
    for (int index = 0; index < count; ++index) {
        if (SkScalarIsNaN(pts[index].fX)) {
            return false;
        }
        if (SkScalarIsNaN(pts[index].fY)) {
            return false;
        }
    }
    return true;
}

bool ValidQuad(const SkDQuad& quad) {
    for (int index = 0; index < 3; ++index) {
        if (!ValidPoint(quad[index])) {
            return false;
        }
    }
    return true;
}

bool ValidTriangle(const SkDTriangle& triangle) {
    for (int index = 0; index < 3; ++index) {
        if (!ValidPoint(triangle.fPts[index])) {
            return false;
        }
    }
    return true;
}

bool ValidVector(const SkDVector& v) {
    if (SkDoubleIsNaN(v.fX)) {
        return false;
    }
    return !SkDoubleIsNaN(v.fY);
}