1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "PathOpsCubicIntersectionTestData.h"
#include "PathOpsQuadIntersectionTestData.h"
#include "PathOpsTestCommon.h"
#include "SkIntersections.h"
#include "SkPathOpsRect.h"
#include "SkReduceOrder.h"
#include "Test.h"
#if 0 // disable test until stroke reduction is supported
static bool controls_inside(const SkDCubic& cubic) {
return between(cubic[0].fX, cubic[1].fX, cubic[3].fX)
&& between(cubic[0].fX, cubic[2].fX, cubic[3].fX)
&& between(cubic[0].fY, cubic[1].fY, cubic[3].fY)
&& between(cubic[0].fY, cubic[2].fY, cubic[3].fY);
}
static bool tiny(const SkDCubic& cubic) {
int index, minX, maxX, minY, maxY;
minX = maxX = minY = maxY = 0;
for (index = 1; index < 4; ++index) {
if (cubic[minX].fX > cubic[index].fX) {
minX = index;
}
if (cubic[minY].fY > cubic[index].fY) {
minY = index;
}
if (cubic[maxX].fX < cubic[index].fX) {
maxX = index;
}
if (cubic[maxY].fY < cubic[index].fY) {
maxY = index;
}
}
return approximately_equal(cubic[maxX].fX, cubic[minX].fX)
&& approximately_equal(cubic[maxY].fY, cubic[minY].fY);
}
static void find_tight_bounds(const SkDCubic& cubic, SkDRect& bounds) {
SkDCubicPair cubicPair = cubic.chopAt(0.5);
if (!tiny(cubicPair.first()) && !controls_inside(cubicPair.first())) {
find_tight_bounds(cubicPair.first(), bounds);
} else {
bounds.add(cubicPair.first()[0]);
bounds.add(cubicPair.first()[3]);
}
if (!tiny(cubicPair.second()) && !controls_inside(cubicPair.second())) {
find_tight_bounds(cubicPair.second(), bounds);
} else {
bounds.add(cubicPair.second()[0]);
bounds.add(cubicPair.second()[3]);
}
}
#endif
DEF_TEST(PathOpsReduceOrderCubic, reporter) {
size_t index;
SkReduceOrder reducer;
int order;
enum {
RunAll,
RunPointDegenerates,
RunNotPointDegenerates,
RunLines,
RunNotLines,
RunModEpsilonLines,
RunLessEpsilonLines,
RunNegEpsilonLines,
RunQuadraticLines,
RunQuadraticPoints,
RunQuadraticModLines,
RunComputedLines,
RunNone
} run = RunAll;
int firstTestIndex = 0;
#if 0
run = RunComputedLines;
firstTestIndex = 18;
#endif
int firstPointDegeneratesTest = run == RunAll ? 0 : run == RunPointDegenerates
? firstTestIndex : SK_MaxS32;
int firstNotPointDegeneratesTest = run == RunAll ? 0 : run == RunNotPointDegenerates
? firstTestIndex : SK_MaxS32;
int firstLinesTest = run == RunAll ? 0 : run == RunLines ? firstTestIndex : SK_MaxS32;
int firstNotLinesTest = run == RunAll ? 0 : run == RunNotLines ? firstTestIndex : SK_MaxS32;
int firstModEpsilonTest = run == RunAll ? 0 : run == RunModEpsilonLines
? firstTestIndex : SK_MaxS32;
int firstLessEpsilonTest = run == RunAll ? 0 : run == RunLessEpsilonLines
? firstTestIndex : SK_MaxS32;
int firstNegEpsilonTest = run == RunAll ? 0 : run == RunNegEpsilonLines
? firstTestIndex : SK_MaxS32;
int firstQuadraticPointTest = run == RunAll ? 0 : run == RunQuadraticPoints
? firstTestIndex : SK_MaxS32;
int firstQuadraticLineTest = run == RunAll ? 0 : run == RunQuadraticLines
? firstTestIndex : SK_MaxS32;
int firstQuadraticModLineTest = run == RunAll ? 0 : run == RunQuadraticModLines
? firstTestIndex : SK_MaxS32;
#if 0
int firstComputedLinesTest = run == RunAll ? 0 : run == RunComputedLines
? firstTestIndex : SK_MaxS32;
#endif
for (index = firstPointDegeneratesTest; index < pointDegenerates_count; ++index) {
const SkDCubic& cubic = pointDegenerates[index];
SkASSERT(ValidCubic(cubic));
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order != 1) {
SkDebugf("[%d] pointDegenerates order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
}
for (index = firstNotPointDegeneratesTest; index < notPointDegenerates_count; ++index) {
const SkDCubic& cubic = notPointDegenerates[index];
SkASSERT(ValidCubic(cubic));
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order == 1) {
SkDebugf("[%d] notPointDegenerates order=%d\n", static_cast<int>(index), order);
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
REPORTER_ASSERT(reporter, 0);
}
}
for (index = firstLinesTest; index < lines_count; ++index) {
const SkDCubic& cubic = lines[index];
SkASSERT(ValidCubic(cubic));
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order != 2) {
SkDebugf("[%d] lines order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
}
for (index = firstNotLinesTest; index < notLines_count; ++index) {
const SkDCubic& cubic = notLines[index];
SkASSERT(ValidCubic(cubic));
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order == 2) {
SkDebugf("[%d] notLines order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
}
for (index = firstModEpsilonTest; index < modEpsilonLines_count; ++index) {
const SkDCubic& cubic = modEpsilonLines[index];
SkASSERT(ValidCubic(cubic));
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order == 2) {
SkDebugf("[%d] line mod by epsilon order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
}
for (index = firstLessEpsilonTest; index < lessEpsilonLines_count; ++index) {
const SkDCubic& cubic = lessEpsilonLines[index];
SkASSERT(ValidCubic(cubic));
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order != 2) {
SkDebugf("[%d] line less by epsilon/2 order=%d\n", static_cast<int>(index), order);
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
REPORTER_ASSERT(reporter, 0);
}
}
for (index = firstNegEpsilonTest; index < negEpsilonLines_count; ++index) {
const SkDCubic& cubic = negEpsilonLines[index];
SkASSERT(ValidCubic(cubic));
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order != 2) {
SkDebugf("[%d] line neg by epsilon/2 order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
}
for (index = firstQuadraticPointTest; index < quadraticPoints_count; ++index) {
const SkDQuad& quad = quadraticPoints[index];
SkASSERT(ValidQuad(quad));
SkDCubic cubic = quad.toCubic();
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order != 1) {
SkDebugf("[%d] point quad order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
}
for (index = firstQuadraticLineTest; index < quadraticLines_count; ++index) {
const SkDQuad& quad = quadraticLines[index];
SkASSERT(ValidQuad(quad));
SkDCubic cubic = quad.toCubic();
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order != 2) {
SkDebugf("[%d] line quad order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
}
for (index = firstQuadraticModLineTest; index < quadraticModEpsilonLines_count; ++index) {
const SkDQuad& quad = quadraticModEpsilonLines[index];
SkASSERT(ValidQuad(quad));
SkDCubic cubic = quad.toCubic();
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics);
if (order != 3) {
SkDebugf("[%d] line mod quad order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
}
#if 0 // disable test until stroke reduction is supported
// test if computed line end points are valid
for (index = firstComputedLinesTest; index < lines_count; ++index) {
const SkDCubic& cubic = lines[index];
SkASSERT(ValidCubic(cubic));
bool controlsInside = controls_inside(cubic);
order = reducer.reduce(cubic, SkReduceOrder::kAllow_Quadratics,
SkReduceOrder::kStroke_Style);
if (order == 2 && reducer.fLine[0] == reducer.fLine[1]) {
SkDebugf("[%d] line computed ends match order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
if (controlsInside) {
if ( (reducer.fLine[0].fX != cubic[0].fX && reducer.fLine[0].fX != cubic[3].fX)
|| (reducer.fLine[0].fY != cubic[0].fY && reducer.fLine[0].fY != cubic[3].fY)
|| (reducer.fLine[1].fX != cubic[0].fX && reducer.fLine[1].fX != cubic[3].fX)
|| (reducer.fLine[1].fY != cubic[0].fY && reducer.fLine[1].fY != cubic[3].fY)) {
SkDebugf("[%d] line computed ends order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
} else {
// binary search for extrema, compare against actual results
// while a control point is outside of bounding box formed by end points, split
SkDRect bounds = {DBL_MAX, DBL_MAX, -DBL_MAX, -DBL_MAX};
find_tight_bounds(cubic, bounds);
if ( (!AlmostEqualUlps(reducer.fLine[0].fX, bounds.fLeft)
&& !AlmostEqualUlps(reducer.fLine[0].fX, bounds.fRight))
|| (!AlmostEqualUlps(reducer.fLine[0].fY, bounds.fTop)
&& !AlmostEqualUlps(reducer.fLine[0].fY, bounds.fBottom))
|| (!AlmostEqualUlps(reducer.fLine[1].fX, bounds.fLeft)
&& !AlmostEqualUlps(reducer.fLine[1].fX, bounds.fRight))
|| (!AlmostEqualUlps(reducer.fLine[1].fY, bounds.fTop)
&& !AlmostEqualUlps(reducer.fLine[1].fY, bounds.fBottom))) {
SkDebugf("[%d] line computed tight bounds order=%d\n", static_cast<int>(index), order);
REPORTER_ASSERT(reporter, 0);
}
}
}
#endif
}
|