1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "PathOpsTestCommon.h"
#include "SkIntersections.h"
#include "SkPathOpsCubic.h"
#include "SkPathOpsLine.h"
#include "SkPathOpsQuad.h"
#include "SkRandom.h"
#include "SkReduceOrder.h"
#include "Test.h"
static bool gPathOpsCubicLineIntersectionIdeasVerbose = false;
static struct CubicLineFailures {
CubicPts c;
double t;
SkDPoint p;
} cubicLineFailures[] = {
{{{{-164.3726806640625, 36.826904296875}, {-189.045166015625, -953.2220458984375},
{926.505859375, -897.36175537109375}, {-139.33489990234375, 204.40771484375}}},
0.37329583, {107.54935269006289, -632.13736293162208}},
{{{{784.056884765625, -554.8350830078125}, {67.5489501953125, 509.0224609375},
{-447.713134765625, 751.375}, {415.7784423828125, 172.22265625}}},
0.660005242, {-32.973148967736151, 478.01341797403569}},
{{{{-580.6834716796875, -127.044921875}, {-872.8983154296875, -945.54302978515625},
{260.8092041015625, -909.34991455078125}, {-976.2125244140625, -18.46551513671875}}},
0.578826774, {-390.17910153915489, -687.21144412296007}},
};
int cubicLineFailuresCount = (int) SK_ARRAY_COUNT(cubicLineFailures);
double measuredSteps[] = {
9.15910731e-007, 8.6600277e-007, 7.4122059e-007, 6.92087618e-007, 8.35290245e-007,
3.29763199e-007, 5.07547773e-007, 4.41294224e-007, 0, 0,
3.76879167e-006, 1.06126249e-006, 2.36873967e-006, 1.62421134e-005, 3.09103599e-005,
4.38917976e-005, 0.000112348938, 0.000243149242, 0.000433174114, 0.00170880232,
0.00272619724, 0.00518844604, 0.000352621078, 0.00175960064, 0.027875185,
0.0351329803, 0.103964925,
};
/* last output : errors=3121
9.1796875e-007 8.59375e-007 7.5e-007 6.875e-007 8.4375e-007
3.125e-007 5e-007 4.375e-007 0 0
3.75e-006 1.09375e-006 2.1875e-006 1.640625e-005 3.0859375e-005
4.38964844e-005 0.000112304687 0.000243164063 0.000433181763 0.00170898437
0.00272619247 0.00518844604 0.000352621078 0.00175960064 0.027875185
0.0351329803 0.103964925
*/
static double binary_search(const SkDCubic& cubic, double step, const SkDPoint& pt, double t,
int* iters) {
double firstStep = step;
do {
*iters += 1;
SkDPoint cubicAtT = cubic.ptAtT(t);
if (cubicAtT.approximatelyEqual(pt)) {
break;
}
double calcX = cubicAtT.fX - pt.fX;
double calcY = cubicAtT.fY - pt.fY;
double calcDist = calcX * calcX + calcY * calcY;
if (step == 0) {
SkDebugf("binary search failed: step=%1.9g cubic=", firstStep);
cubic.dump();
SkDebugf(" t=%1.9g ", t);
pt.dump();
SkDebugf("\n");
return -1;
}
double lastStep = step;
step /= 2;
SkDPoint lessPt = cubic.ptAtT(t - lastStep);
double lessX = lessPt.fX - pt.fX;
double lessY = lessPt.fY - pt.fY;
double lessDist = lessX * lessX + lessY * lessY;
// use larger x/y difference to choose step
if (calcDist > lessDist) {
t -= step;
t = SkTMax(0., t);
} else {
SkDPoint morePt = cubic.ptAtT(t + lastStep);
double moreX = morePt.fX - pt.fX;
double moreY = morePt.fY - pt.fY;
double moreDist = moreX * moreX + moreY * moreY;
if (calcDist <= moreDist) {
continue;
}
t += step;
t = SkTMin(1., t);
}
} while (true);
return t;
}
#if 0
static bool r2check(double A, double B, double C, double D, double* R2MinusQ3Ptr) {
if (approximately_zero(A)
&& approximately_zero_when_compared_to(A, B)
&& approximately_zero_when_compared_to(A, C)
&& approximately_zero_when_compared_to(A, D)) { // we're just a quadratic
return false;
}
if (approximately_zero_when_compared_to(D, A)
&& approximately_zero_when_compared_to(D, B)
&& approximately_zero_when_compared_to(D, C)) { // 0 is one root
return false;
}
if (approximately_zero(A + B + C + D)) { // 1 is one root
return false;
}
double a, b, c;
{
double invA = 1 / A;
a = B * invA;
b = C * invA;
c = D * invA;
}
double a2 = a * a;
double Q = (a2 - b * 3) / 9;
double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
double R2 = R * R;
double Q3 = Q * Q * Q;
double R2MinusQ3 = R2 - Q3;
*R2MinusQ3Ptr = R2MinusQ3;
return true;
}
#endif
/* What is the relationship between the accuracy of the root in range and the magnitude of all
roots? To find out, create a bunch of cubics, and measure */
DEF_TEST(PathOpsCubicLineRoots, reporter) {
if (!gPathOpsCubicLineIntersectionIdeasVerbose) { // slow; exclude it by default
return;
}
SkRandom ran;
double worstStep[256] = {0};
int errors = 0;
int iters = 0;
double smallestR2 = 0;
double largestR2 = 0;
for (int index = 0; index < 1000000000; ++index) {
SkDPoint origin = {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)};
CubicPts cuPts = {{origin,
{ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
{ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
{ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}
}};
// construct a line at a known intersection
double t = ran.nextRangeF(0, 1);
SkDCubic cubic;
cubic.debugSet(cuPts.fPts);
SkDPoint pt = cubic.ptAtT(t);
// skip answers with no intersections (although note the bug!) or two, or more
// see if the line / cubic has a fun range of roots
double A, B, C, D;
SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D);
D -= pt.fY;
double allRoots[3] = {0}, validRoots[3] = {0};
int realRoots = SkDCubic::RootsReal(A, B, C, D, allRoots);
int valid = SkDQuad::AddValidTs(allRoots, realRoots, validRoots);
if (valid != 1) {
continue;
}
if (realRoots == 1) {
continue;
}
t = validRoots[0];
SkDPoint calcPt = cubic.ptAtT(t);
if (calcPt.approximatelyEqual(pt)) {
continue;
}
#if 0
double R2MinusQ3;
if (r2check(A, B, C, D, &R2MinusQ3)) {
smallestR2 = SkTMin(smallestR2, R2MinusQ3);
largestR2 = SkTMax(largestR2, R2MinusQ3);
}
#endif
double largest = SkTMax(fabs(allRoots[0]), fabs(allRoots[1]));
if (realRoots == 3) {
largest = SkTMax(largest, fabs(allRoots[2]));
}
int largeBits;
if (largest <= 1) {
#if 0
SkDebugf("realRoots=%d (%1.9g, %1.9g, %1.9g) valid=%d (%1.9g, %1.9g, %1.9g)\n",
realRoots, allRoots[0], allRoots[1], allRoots[2], valid, validRoots[0],
validRoots[1], validRoots[2]);
#endif
double smallest = SkTMin(allRoots[0], allRoots[1]);
if (realRoots == 3) {
smallest = SkTMin(smallest, allRoots[2]);
}
SkASSERT_RELEASE(smallest < 0);
SkASSERT_RELEASE(smallest >= -1);
largeBits = 0;
} else {
frexp(largest, &largeBits);
SkASSERT_RELEASE(largeBits >= 0);
SkASSERT_RELEASE(largeBits < 256);
}
double step = 1e-6;
if (largeBits > 21) {
step = 1e-1;
} else if (largeBits > 18) {
step = 1e-2;
} else if (largeBits > 15) {
step = 1e-3;
} else if (largeBits > 12) {
step = 1e-4;
} else if (largeBits > 9) {
step = 1e-5;
}
double diff;
do {
double newT = binary_search(cubic, step, pt, t, &iters);
if (newT >= 0) {
diff = fabs(t - newT);
break;
}
step *= 1.5;
SkASSERT_RELEASE(step < 1);
} while (true);
worstStep[largeBits] = SkTMax(worstStep[largeBits], diff);
#if 0
{
cubic.dump();
SkDebugf("\n");
SkDLine line = {{{pt.fX - 1, pt.fY}, {pt.fX + 1, pt.fY}}};
line.dump();
SkDebugf("\n");
}
#endif
++errors;
}
SkDebugf("errors=%d avgIter=%1.9g", errors, (double) iters / errors);
SkDebugf(" steps: ");
int worstLimit = SK_ARRAY_COUNT(worstStep);
while (worstStep[--worstLimit] == 0) ;
for (int idx2 = 0; idx2 <= worstLimit; ++idx2) {
SkDebugf("%1.9g ", worstStep[idx2]);
}
SkDebugf("\n");
SkDebugf("smallestR2=%1.9g largestR2=%1.9g\n", smallestR2, largestR2);
}
static double testOneFailure(const CubicLineFailures& failure) {
const CubicPts& c = failure.c;
SkDCubic cubic;
cubic.debugSet(c.fPts);
const SkDPoint& pt = failure.p;
double A, B, C, D;
SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D);
D -= pt.fY;
double allRoots[3] = {0}, validRoots[3] = {0};
int realRoots = SkDCubic::RootsReal(A, B, C, D, allRoots);
int valid = SkDQuad::AddValidTs(allRoots, realRoots, validRoots);
SkASSERT_RELEASE(valid == 1);
SkASSERT_RELEASE(realRoots != 1);
double t = validRoots[0];
SkDPoint calcPt = cubic.ptAtT(t);
SkASSERT_RELEASE(!calcPt.approximatelyEqual(pt));
int iters = 0;
double newT = binary_search(cubic, 0.1, pt, t, &iters);
return newT;
}
DEF_TEST(PathOpsCubicLineFailures, reporter) {
return; // disable for now
for (int index = 0; index < cubicLineFailuresCount; ++index) {
const CubicLineFailures& failure = cubicLineFailures[index];
double newT = testOneFailure(failure);
SkASSERT_RELEASE(newT >= 0);
}
}
DEF_TEST(PathOpsCubicLineOneFailure, reporter) {
return; // disable for now
const CubicLineFailures& failure = cubicLineFailures[1];
double newT = testOneFailure(failure);
SkASSERT_RELEASE(newT >= 0);
}
|