1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkMatrix44.h"
#include "Test.h"
static bool nearly_equal_double(double a, double b) {
const double tolerance = 1e-7;
double diff = a - b;
if (diff < 0)
diff = -diff;
return diff <= tolerance;
}
static bool nearly_equal_mscalar(SkMScalar a, SkMScalar b) {
const SkMScalar tolerance = SK_MScalar1 / 200000;
return SkTAbs<SkMScalar>(a - b) <= tolerance;
}
static bool nearly_equal_scalar(SkScalar a, SkScalar b) {
const SkScalar tolerance = SK_Scalar1 / 200000;
return SkScalarAbs(a - b) <= tolerance;
}
template <typename T> void assert16(skiatest::Reporter* reporter, const T data[],
T m0, T m1, T m2, T m3,
T m4, T m5, T m6, T m7,
T m8, T m9, T m10, T m11,
T m12, T m13, T m14, T m15) {
REPORTER_ASSERT(reporter, data[0] == m0);
REPORTER_ASSERT(reporter, data[1] == m1);
REPORTER_ASSERT(reporter, data[2] == m2);
REPORTER_ASSERT(reporter, data[3] == m3);
REPORTER_ASSERT(reporter, data[4] == m4);
REPORTER_ASSERT(reporter, data[5] == m5);
REPORTER_ASSERT(reporter, data[6] == m6);
REPORTER_ASSERT(reporter, data[7] == m7);
REPORTER_ASSERT(reporter, data[8] == m8);
REPORTER_ASSERT(reporter, data[9] == m9);
REPORTER_ASSERT(reporter, data[10] == m10);
REPORTER_ASSERT(reporter, data[11] == m11);
REPORTER_ASSERT(reporter, data[12] == m12);
REPORTER_ASSERT(reporter, data[13] == m13);
REPORTER_ASSERT(reporter, data[14] == m14);
REPORTER_ASSERT(reporter, data[15] == m15);
}
static bool nearly_equal(const SkMatrix44& a, const SkMatrix44& b) {
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
if (!nearly_equal_mscalar(a.get(i, j), b.get(i, j))) {
SkDebugf("not equal %g %g\n", a.get(i, j), b.get(i, j));
return false;
}
}
}
return true;
}
static bool is_identity(const SkMatrix44& m) {
SkMatrix44 identity(SkMatrix44::kIdentity_Constructor);
return nearly_equal(m, identity);
}
///////////////////////////////////////////////////////////////////////////////
static bool bits_isonly(int value, int mask) {
return 0 == (value & ~mask);
}
static void test_constructor(skiatest::Reporter* reporter) {
// Allocate a matrix on the heap
SkMatrix44* placeholderMatrix = new SkMatrix44(SkMatrix44::kUninitialized_Constructor);
SkAutoTDelete<SkMatrix44> deleteMe(placeholderMatrix);
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
placeholderMatrix->setDouble(row, col, row * col);
}
}
// Use placement-new syntax to trigger the constructor on top of the heap
// address we already initialized. This allows us to check that the
// constructor did avoid initializing the matrix contents.
SkMatrix44* testMatrix = new(placeholderMatrix) SkMatrix44(SkMatrix44::kUninitialized_Constructor);
REPORTER_ASSERT(reporter, testMatrix == placeholderMatrix);
REPORTER_ASSERT(reporter, !testMatrix->isIdentity());
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
REPORTER_ASSERT(reporter, nearly_equal_double(row * col, testMatrix->getDouble(row, col)));
}
}
// Verify that kIdentity_Constructor really does initialize to an identity matrix.
testMatrix = 0;
testMatrix = new(placeholderMatrix) SkMatrix44(SkMatrix44::kIdentity_Constructor);
REPORTER_ASSERT(reporter, testMatrix == placeholderMatrix);
REPORTER_ASSERT(reporter, testMatrix->isIdentity());
REPORTER_ASSERT(reporter, *testMatrix == SkMatrix44::I());
// Verify that that constructing from an SkMatrix initializes everything.
SkMatrix44 scaleMatrix(SkMatrix44::kUninitialized_Constructor);
scaleMatrix.setScale(3, 4, 5);
REPORTER_ASSERT(reporter, scaleMatrix.isScale());
testMatrix = new(&scaleMatrix) SkMatrix44(SkMatrix::I());
REPORTER_ASSERT(reporter, testMatrix->isIdentity());
REPORTER_ASSERT(reporter, *testMatrix == SkMatrix44::I());
}
static void test_translate(skiatest::Reporter* reporter) {
SkMatrix44 mat(SkMatrix44::kUninitialized_Constructor);
SkMatrix44 inverse(SkMatrix44::kUninitialized_Constructor);
mat.setTranslate(0, 0, 0);
REPORTER_ASSERT(reporter, bits_isonly(mat.getType(), SkMatrix44::kIdentity_Mask));
mat.setTranslate(1, 2, 3);
REPORTER_ASSERT(reporter, bits_isonly(mat.getType(), SkMatrix44::kTranslate_Mask));
REPORTER_ASSERT(reporter, mat.invert(&inverse));
REPORTER_ASSERT(reporter, bits_isonly(inverse.getType(), SkMatrix44::kTranslate_Mask));
SkMatrix44 a(SkMatrix44::kUninitialized_Constructor);
SkMatrix44 b(SkMatrix44::kUninitialized_Constructor);
SkMatrix44 c(SkMatrix44::kUninitialized_Constructor);
a.set3x3(1, 2, 3, 4, 5, 6, 7, 8, 9);
b.setTranslate(10, 11, 12);
c.setConcat(a, b);
mat = a;
mat.preTranslate(10, 11, 12);
REPORTER_ASSERT(reporter, mat == c);
c.setConcat(b, a);
mat = a;
mat.postTranslate(10, 11, 12);
REPORTER_ASSERT(reporter, mat == c);
}
static void test_scale(skiatest::Reporter* reporter) {
SkMatrix44 mat(SkMatrix44::kUninitialized_Constructor);
SkMatrix44 inverse(SkMatrix44::kUninitialized_Constructor);
mat.setScale(1, 1, 1);
REPORTER_ASSERT(reporter, bits_isonly(mat.getType(), SkMatrix44::kIdentity_Mask));
mat.setScale(1, 2, 3);
REPORTER_ASSERT(reporter, bits_isonly(mat.getType(), SkMatrix44::kScale_Mask));
REPORTER_ASSERT(reporter, mat.invert(&inverse));
REPORTER_ASSERT(reporter, bits_isonly(inverse.getType(), SkMatrix44::kScale_Mask));
SkMatrix44 a(SkMatrix44::kUninitialized_Constructor);
SkMatrix44 b(SkMatrix44::kUninitialized_Constructor);
SkMatrix44 c(SkMatrix44::kUninitialized_Constructor);
a.set3x3(1, 2, 3, 4, 5, 6, 7, 8, 9);
b.setScale(10, 11, 12);
c.setConcat(a, b);
mat = a;
mat.preScale(10, 11, 12);
REPORTER_ASSERT(reporter, mat == c);
c.setConcat(b, a);
mat = a;
mat.postScale(10, 11, 12);
REPORTER_ASSERT(reporter, mat == c);
}
static void make_i(SkMatrix44* mat) { mat->setIdentity(); }
static void make_t(SkMatrix44* mat) { mat->setTranslate(1, 2, 3); }
static void make_s(SkMatrix44* mat) { mat->setScale(1, 2, 3); }
static void make_st(SkMatrix44* mat) {
mat->setScale(1, 2, 3);
mat->postTranslate(1, 2, 3);
}
static void make_a(SkMatrix44* mat) {
mat->setRotateDegreesAbout(1, 2, 3, 45);
}
static void make_p(SkMatrix44* mat) {
SkMScalar data[] = {
1, 2, 3, 4, 5, 6, 7, 8,
1, 2, 3, 4, 5, 6, 7, 8,
};
mat->setRowMajor(data);
}
typedef void (*Make44Proc)(SkMatrix44*);
static const Make44Proc gMakeProcs[] = {
make_i, make_t, make_s, make_st, make_a, make_p
};
static void test_map2(skiatest::Reporter* reporter, const SkMatrix44& mat) {
SkMScalar src2[] = { 1, 2 };
SkMScalar src4[] = { src2[0], src2[1], 0, 1 };
SkMScalar dstA[4], dstB[4];
for (int i = 0; i < 4; ++i) {
dstA[i] = 123456789;
dstB[i] = 987654321;
}
mat.map2(src2, 1, dstA);
mat.mapMScalars(src4, dstB);
for (int i = 0; i < 4; ++i) {
REPORTER_ASSERT(reporter, dstA[i] == dstB[i]);
}
}
static void test_map2(skiatest::Reporter* reporter) {
SkMatrix44 mat(SkMatrix44::kUninitialized_Constructor);
for (size_t i = 0; i < SK_ARRAY_COUNT(gMakeProcs); ++i) {
gMakeProcs[i](&mat);
test_map2(reporter, mat);
}
}
static void test_gettype(skiatest::Reporter* reporter) {
SkMatrix44 matrix(SkMatrix44::kIdentity_Constructor);
REPORTER_ASSERT(reporter, matrix.isIdentity());
REPORTER_ASSERT(reporter, SkMatrix44::kIdentity_Mask == matrix.getType());
int expectedMask;
matrix.set(1, 1, 0);
expectedMask = SkMatrix44::kScale_Mask;
REPORTER_ASSERT(reporter, matrix.getType() == expectedMask);
matrix.set(0, 3, 1); // translate-x
expectedMask |= SkMatrix44::kTranslate_Mask;
REPORTER_ASSERT(reporter, matrix.getType() == expectedMask);
matrix.set(2, 0, 1);
expectedMask |= SkMatrix44::kAffine_Mask;
REPORTER_ASSERT(reporter, matrix.getType() == expectedMask);
matrix.set(3, 2, 1);
REPORTER_ASSERT(reporter, matrix.getType() & SkMatrix44::kPerspective_Mask);
// ensure that negative zero is treated as zero
SkMScalar dx = 0;
SkMScalar dy = 0;
SkMScalar dz = 0;
matrix.setTranslate(-dx, -dy, -dz);
REPORTER_ASSERT(reporter, matrix.isIdentity());
matrix.preTranslate(-dx, -dy, -dz);
REPORTER_ASSERT(reporter, matrix.isIdentity());
matrix.postTranslate(-dx, -dy, -dz);
REPORTER_ASSERT(reporter, matrix.isIdentity());
}
static void test_common_angles(skiatest::Reporter* reporter) {
SkMatrix44 rot(SkMatrix44::kUninitialized_Constructor);
// Test precision of rotation in common cases
int common_angles[] = { 0, 90, -90, 180, -180, 270, -270, 360, -360 };
for (int i = 0; i < 9; ++i) {
rot.setRotateDegreesAbout(0, 0, -1, SkIntToScalar(common_angles[i]));
SkMatrix rot3x3 = rot;
REPORTER_ASSERT(reporter, rot3x3.rectStaysRect());
}
}
static void test_concat(skiatest::Reporter* reporter) {
int i;
SkMatrix44 a(SkMatrix44::kUninitialized_Constructor);
SkMatrix44 b(SkMatrix44::kUninitialized_Constructor);
SkMatrix44 c(SkMatrix44::kUninitialized_Constructor);
SkMatrix44 d(SkMatrix44::kUninitialized_Constructor);
a.setTranslate(10, 10, 10);
b.setScale(2, 2, 2);
SkScalar src[8] = {
0, 0, 0, 1,
1, 1, 1, 1
};
SkScalar dst[8];
c.setConcat(a, b);
d = a;
d.preConcat(b);
REPORTER_ASSERT(reporter, d == c);
c.mapScalars(src, dst); c.mapScalars(src + 4, dst + 4);
for (i = 0; i < 3; ++i) {
REPORTER_ASSERT(reporter, 10 == dst[i]);
REPORTER_ASSERT(reporter, 12 == dst[i + 4]);
}
c.setConcat(b, a);
d = a;
d.postConcat(b);
REPORTER_ASSERT(reporter, d == c);
c.mapScalars(src, dst); c.mapScalars(src + 4, dst + 4);
for (i = 0; i < 3; ++i) {
REPORTER_ASSERT(reporter, 20 == dst[i]);
REPORTER_ASSERT(reporter, 22 == dst[i + 4]);
}
}
static void test_determinant(skiatest::Reporter* reporter) {
SkMatrix44 a(SkMatrix44::kIdentity_Constructor);
REPORTER_ASSERT(reporter, nearly_equal_double(1, a.determinant()));
a.set(1, 1, 2);
REPORTER_ASSERT(reporter, nearly_equal_double(2, a.determinant()));
SkMatrix44 b(SkMatrix44::kUninitialized_Constructor);
REPORTER_ASSERT(reporter, a.invert(&b));
REPORTER_ASSERT(reporter, nearly_equal_double(0.5, b.determinant()));
SkMatrix44 c = b = a;
c.set(0, 1, 4);
b.set(1, 0, 4);
REPORTER_ASSERT(reporter,
nearly_equal_double(a.determinant(),
b.determinant()));
SkMatrix44 d = a;
d.set(0, 0, 8);
REPORTER_ASSERT(reporter, nearly_equal_double(16, d.determinant()));
SkMatrix44 e = a;
e.postConcat(d);
REPORTER_ASSERT(reporter, nearly_equal_double(32, e.determinant()));
e.set(0, 0, 0);
REPORTER_ASSERT(reporter, nearly_equal_double(0, e.determinant()));
}
static void test_invert(skiatest::Reporter* reporter) {
SkMatrix44 inverse(SkMatrix44::kUninitialized_Constructor);
double inverseData[16];
SkMatrix44 identity(SkMatrix44::kIdentity_Constructor);
identity.invert(&inverse);
inverse.asRowMajord(inverseData);
assert16<double>(reporter, inverseData,
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1);
SkMatrix44 translation(SkMatrix44::kUninitialized_Constructor);
translation.setTranslate(2, 3, 4);
translation.invert(&inverse);
inverse.asRowMajord(inverseData);
assert16<double>(reporter, inverseData,
1, 0, 0, -2,
0, 1, 0, -3,
0, 0, 1, -4,
0, 0, 0, 1);
SkMatrix44 scale(SkMatrix44::kUninitialized_Constructor);
scale.setScale(2, 4, 8);
scale.invert(&inverse);
inverse.asRowMajord(inverseData);
assert16<double>(reporter, inverseData,
0.5, 0, 0, 0,
0, 0.25, 0, 0,
0, 0, 0.125, 0,
0, 0, 0, 1);
SkMatrix44 scaleTranslation(SkMatrix44::kUninitialized_Constructor);
scaleTranslation.setScale(10, 100, 1000);
scaleTranslation.preTranslate(2, 3, 4);
scaleTranslation.invert(&inverse);
inverse.asRowMajord(inverseData);
assert16<double>(reporter, inverseData,
0.1, 0, 0, -2,
0, 0.01, 0, -3,
0, 0, 0.001, -4,
0, 0, 0, 1);
SkMatrix44 rotation(SkMatrix44::kUninitialized_Constructor);
rotation.setRotateDegreesAbout(0, 0, 1, 90);
rotation.invert(&inverse);
SkMatrix44 expected(SkMatrix44::kUninitialized_Constructor);
double expectedInverseRotation[16] =
{0, 1, 0, 0,
-1, 0, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1};
expected.setRowMajord(expectedInverseRotation);
REPORTER_ASSERT(reporter, nearly_equal(expected, inverse));
SkMatrix44 affine(SkMatrix44::kUninitialized_Constructor);
affine.setRotateDegreesAbout(0, 0, 1, 90);
affine.preScale(10, 20, 100);
affine.preTranslate(2, 3, 4);
affine.invert(&inverse);
double expectedInverseAffine[16] =
{0, 0.1, 0, -2,
-0.05, 0, 0, -3,
0, 0, 0.01, -4,
0, 0, 0, 1};
expected.setRowMajord(expectedInverseAffine);
REPORTER_ASSERT(reporter, nearly_equal(expected, inverse));
SkMatrix44 perspective(SkMatrix44::kIdentity_Constructor);
perspective.setDouble(3, 2, 1.0);
perspective.invert(&inverse);
double expectedInversePerspective[16] =
{1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, -1, 1};
expected.setRowMajord(expectedInversePerspective);
REPORTER_ASSERT(reporter, nearly_equal(expected, inverse));
SkMatrix44 affineAndPerspective(SkMatrix44::kIdentity_Constructor);
affineAndPerspective.setDouble(3, 2, 1.0);
affineAndPerspective.preScale(10, 20, 100);
affineAndPerspective.preTranslate(2, 3, 4);
affineAndPerspective.invert(&inverse);
double expectedInverseAffineAndPerspective[16] =
{0.1, 0, 2, -2,
0, 0.05, 3, -3,
0, 0, 4.01, -4,
0, 0, -1, 1};
expected.setRowMajord(expectedInverseAffineAndPerspective);
REPORTER_ASSERT(reporter, nearly_equal(expected, inverse));
}
static void test_transpose(skiatest::Reporter* reporter) {
SkMatrix44 a(SkMatrix44::kUninitialized_Constructor);
SkMatrix44 b(SkMatrix44::kUninitialized_Constructor);
int i = 0;
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
a.setDouble(row, col, i);
b.setDouble(col, row, i++);
}
}
a.transpose();
REPORTER_ASSERT(reporter, nearly_equal(a, b));
}
static void test_get_set_double(skiatest::Reporter* reporter) {
SkMatrix44 a(SkMatrix44::kUninitialized_Constructor);
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
a.setDouble(row, col, 3.141592653589793);
REPORTER_ASSERT(reporter,
nearly_equal_double(3.141592653589793,
a.getDouble(row, col)));
a.setDouble(row, col, 0);
REPORTER_ASSERT(reporter,
nearly_equal_double(0, a.getDouble(row, col)));
}
}
}
static void test_set_row_col_major(skiatest::Reporter* reporter) {
SkMatrix44 a(SkMatrix44::kUninitialized_Constructor);
SkMatrix44 b(SkMatrix44::kUninitialized_Constructor);
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
a.setDouble(row, col, row * 4 + col);
}
}
double bufferd[16];
float bufferf[16];
a.asColMajord(bufferd);
b.setColMajord(bufferd);
REPORTER_ASSERT(reporter, nearly_equal(a, b));
b.setRowMajord(bufferd);
b.transpose();
REPORTER_ASSERT(reporter, nearly_equal(a, b));
a.asColMajorf(bufferf);
b.setColMajorf(bufferf);
REPORTER_ASSERT(reporter, nearly_equal(a, b));
b.setRowMajorf(bufferf);
b.transpose();
REPORTER_ASSERT(reporter, nearly_equal(a, b));
}
static void test_3x3_conversion(skiatest::Reporter* reporter) {
SkMScalar values4x4[16] = { 1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16 };
SkScalar values3x3[9] = { 1, 2, 4,
5, 6, 8,
13, 14, 16 };
SkMScalar values4x4flattened[16] = { 1, 2, 0, 4,
5, 6, 0, 8,
0, 0, 1, 0,
13, 14, 0, 16 };
SkMatrix44 a44(SkMatrix44::kUninitialized_Constructor);
a44.setRowMajor(values4x4);
SkMatrix a33 = a44;
SkMatrix expected33;
for (int i = 0; i < 9; i++) expected33[i] = values3x3[i];
REPORTER_ASSERT(reporter, expected33 == a33);
SkMatrix44 a44flattened = a33;
SkMatrix44 expected44flattened(SkMatrix44::kUninitialized_Constructor);
expected44flattened.setRowMajor(values4x4flattened);
REPORTER_ASSERT(reporter, nearly_equal(a44flattened, expected44flattened));
// Test that a point with a Z value of 0 is transformed the same way.
SkScalar vec4[4] = { 2, 4, 0, 8 };
SkScalar vec3[3] = { 2, 4, 8 };
SkScalar vec4transformed[4];
SkScalar vec3transformed[3];
SkScalar vec4transformed2[4];
a44.mapScalars(vec4, vec4transformed);
a33.mapHomogeneousPoints(vec3transformed, vec3, 1);
a44flattened.mapScalars(vec4, vec4transformed2);
REPORTER_ASSERT(reporter, nearly_equal_scalar(vec4transformed[0], vec3transformed[0]));
REPORTER_ASSERT(reporter, nearly_equal_scalar(vec4transformed[1], vec3transformed[1]));
REPORTER_ASSERT(reporter, nearly_equal_scalar(vec4transformed[3], vec3transformed[2]));
REPORTER_ASSERT(reporter, nearly_equal_scalar(vec4transformed[0], vec4transformed2[0]));
REPORTER_ASSERT(reporter, nearly_equal_scalar(vec4transformed[1], vec4transformed2[1]));
REPORTER_ASSERT(reporter, !nearly_equal_scalar(vec4transformed[2], vec4transformed2[2]));
REPORTER_ASSERT(reporter, nearly_equal_scalar(vec4transformed[3], vec4transformed2[3]));
}
static void test_has_perspective(skiatest::Reporter* reporter) {
SkMatrix44 transform(SkMatrix44::kIdentity_Constructor);
transform.set(3, 2, -0.1);
REPORTER_ASSERT(reporter, transform.hasPerspective());
transform.reset();
REPORTER_ASSERT(reporter, !transform.hasPerspective());
transform.set(3, 0, -1.0);
REPORTER_ASSERT(reporter, transform.hasPerspective());
transform.reset();
transform.set(3, 1, -1.0);
REPORTER_ASSERT(reporter, transform.hasPerspective());
transform.reset();
transform.set(3, 2, -0.3);
REPORTER_ASSERT(reporter, transform.hasPerspective());
transform.reset();
transform.set(3, 3, 0.5);
REPORTER_ASSERT(reporter, transform.hasPerspective());
transform.reset();
transform.set(3, 3, 0.0);
REPORTER_ASSERT(reporter, transform.hasPerspective());
}
static bool is_rectilinear (SkVector4& p1, SkVector4& p2, SkVector4& p3, SkVector4& p4) {
return (SkScalarNearlyEqual(p1.fData[0], p2.fData[0]) &&
SkScalarNearlyEqual(p2.fData[1], p3.fData[1]) &&
SkScalarNearlyEqual(p3.fData[0], p4.fData[0]) &&
SkScalarNearlyEqual(p4.fData[1], p1.fData[1])) ||
(SkScalarNearlyEqual(p1.fData[1], p2.fData[1]) &&
SkScalarNearlyEqual(p2.fData[0], p3.fData[0]) &&
SkScalarNearlyEqual(p3.fData[1], p4.fData[1]) &&
SkScalarNearlyEqual(p4.fData[0], p1.fData[0]));
}
static SkVector4 mul_with_persp_divide(const SkMatrix44& transform, const SkVector4& target) {
SkVector4 result = transform * target;
if (result.fData[3] != 0.0f && result.fData[3] != SK_Scalar1) {
float wInverse = SK_Scalar1 / result.fData[3];
result.set(result.fData[0] * wInverse,
result.fData[1] * wInverse,
result.fData[2] * wInverse,
SK_Scalar1);
}
return result;
}
static bool empirically_preserves_2d_axis_alignment(skiatest::Reporter* reporter,
const SkMatrix44& transform) {
SkVector4 p1(5.0f, 5.0f, 0.0f);
SkVector4 p2(10.0f, 5.0f, 0.0f);
SkVector4 p3(10.0f, 20.0f, 0.0f);
SkVector4 p4(5.0f, 20.0f, 0.0f);
REPORTER_ASSERT(reporter, is_rectilinear(p1, p2, p3, p4));
p1 = mul_with_persp_divide(transform, p1);
p2 = mul_with_persp_divide(transform, p2);
p3 = mul_with_persp_divide(transform, p3);
p4 = mul_with_persp_divide(transform, p4);
return is_rectilinear(p1, p2, p3, p4);
}
static void test(bool expected, skiatest::Reporter* reporter, const SkMatrix44& transform) {
if (expected) {
REPORTER_ASSERT(reporter, empirically_preserves_2d_axis_alignment(reporter, transform));
REPORTER_ASSERT(reporter, transform.preserves2dAxisAlignment());
} else {
REPORTER_ASSERT(reporter, !empirically_preserves_2d_axis_alignment(reporter, transform));
REPORTER_ASSERT(reporter, !transform.preserves2dAxisAlignment());
}
}
static void test_preserves_2d_axis_alignment(skiatest::Reporter* reporter) {
SkMatrix44 transform(SkMatrix44::kUninitialized_Constructor);
SkMatrix44 transform2(SkMatrix44::kUninitialized_Constructor);
static const struct TestCase {
SkMScalar a; // row 1, column 1
SkMScalar b; // row 1, column 2
SkMScalar c; // row 2, column 1
SkMScalar d; // row 2, column 2
bool expected;
} test_cases[] = {
{ 3.f, 0.f,
0.f, 4.f, true }, // basic case
{ 0.f, 4.f,
3.f, 0.f, true }, // rotate by 90
{ 0.f, 0.f,
0.f, 4.f, true }, // degenerate x
{ 3.f, 0.f,
0.f, 0.f, true }, // degenerate y
{ 0.f, 0.f,
3.f, 0.f, true }, // degenerate x + rotate by 90
{ 0.f, 4.f,
0.f, 0.f, true }, // degenerate y + rotate by 90
{ 3.f, 4.f,
0.f, 0.f, false },
{ 0.f, 0.f,
3.f, 4.f, false },
{ 0.f, 3.f,
0.f, 4.f, false },
{ 3.f, 0.f,
4.f, 0.f, false },
{ 3.f, 4.f,
5.f, 0.f, false },
{ 3.f, 4.f,
0.f, 5.f, false },
{ 3.f, 0.f,
4.f, 5.f, false },
{ 0.f, 3.f,
4.f, 5.f, false },
{ 2.f, 3.f,
4.f, 5.f, false },
};
for (size_t i = 0; i < sizeof(test_cases)/sizeof(TestCase); ++i) {
const TestCase& value = test_cases[i];
transform.setIdentity();
transform.set(0, 0, value.a);
transform.set(0, 1, value.b);
transform.set(1, 0, value.c);
transform.set(1, 1, value.d);
test(value.expected, reporter, transform);
}
// Try the same test cases again, but this time make sure that other matrix
// elements (except perspective) have entries, to test that they are ignored.
for (size_t i = 0; i < sizeof(test_cases)/sizeof(TestCase); ++i) {
const TestCase& value = test_cases[i];
transform.setIdentity();
transform.set(0, 0, value.a);
transform.set(0, 1, value.b);
transform.set(1, 0, value.c);
transform.set(1, 1, value.d);
transform.set(0, 2, 1.f);
transform.set(0, 3, 2.f);
transform.set(1, 2, 3.f);
transform.set(1, 3, 4.f);
transform.set(2, 0, 5.f);
transform.set(2, 1, 6.f);
transform.set(2, 2, 7.f);
transform.set(2, 3, 8.f);
test(value.expected, reporter, transform);
}
// Try the same test cases again, but this time add perspective which is
// always assumed to not-preserve axis alignment.
for (size_t i = 0; i < sizeof(test_cases)/sizeof(TestCase); ++i) {
const TestCase& value = test_cases[i];
transform.setIdentity();
transform.set(0, 0, value.a);
transform.set(0, 1, value.b);
transform.set(1, 0, value.c);
transform.set(1, 1, value.d);
transform.set(0, 2, 1.f);
transform.set(0, 3, 2.f);
transform.set(1, 2, 3.f);
transform.set(1, 3, 4.f);
transform.set(2, 0, 5.f);
transform.set(2, 1, 6.f);
transform.set(2, 2, 7.f);
transform.set(2, 3, 8.f);
transform.set(3, 0, 9.f);
transform.set(3, 1, 10.f);
transform.set(3, 2, 11.f);
transform.set(3, 3, 12.f);
test(false, reporter, transform);
}
// Try a few more practical situations to check precision
// Reuse TestCase (a, b, c, d) as (x, y, z, degrees) axis to rotate about.
TestCase rotation_tests[] = {
{ 0.0, 0.0, 1.0, 90.0, true },
{ 0.0, 0.0, 1.0, 180.0, true },
{ 0.0, 0.0, 1.0, 270.0, true },
{ 0.0, 1.0, 0.0, 90.0, true },
{ 1.0, 0.0, 0.0, 90.0, true },
{ 0.0, 0.0, 1.0, 45.0, false },
// In 3d these next two are non-preserving, but we're testing in 2d after
// orthographic projection, where they are.
{ 0.0, 1.0, 0.0, 45.0, true },
{ 1.0, 0.0, 0.0, 45.0, true },
};
for (size_t i = 0; i < sizeof(rotation_tests)/sizeof(TestCase); ++i) {
const TestCase& value = rotation_tests[i];
transform.setRotateDegreesAbout(value.a, value.b, value.c, value.d);
test(value.expected, reporter, transform);
}
static const struct DoubleRotationCase {
SkMScalar x1;
SkMScalar y1;
SkMScalar z1;
SkMScalar degrees1;
SkMScalar x2;
SkMScalar y2;
SkMScalar z2;
SkMScalar degrees2;
bool expected;
} double_rotation_tests[] = {
{ 0.0, 0.0, 1.0, 90.0, 0.0, 1.0, 0.0, 90.0, true },
{ 0.0, 0.0, 1.0, 90.0, 1.0, 0.0, 0.0, 90.0, true },
{ 0.0, 1.0, 0.0, 90.0, 0.0, 0.0, 1.0, 90.0, true },
};
for (size_t i = 0; i < sizeof(double_rotation_tests)/sizeof(DoubleRotationCase); ++i) {
const DoubleRotationCase& value = double_rotation_tests[i];
transform.setRotateDegreesAbout(value.x1, value.y1, value.z1, value.degrees1);
transform2.setRotateDegreesAbout(value.x2, value.y2, value.z2, value.degrees2);
transform.postConcat(transform2);
test(value.expected, reporter, transform);
}
// Perspective cases.
transform.setIdentity();
transform.set(3, 2, -0.1); // Perspective depth 10
transform2.setRotateDegreesAbout(0.0, 1.0, 0.0, 45.0);
transform.preConcat(transform2);
test(false, reporter, transform);
transform.setIdentity();
transform.set(3, 2, -0.1); // Perspective depth 10
transform2.setRotateDegreesAbout(0.0, 0.0, 1.0, 90.0);
transform.preConcat(transform2);
test(true, reporter, transform);
}
// just want to exercise the various converters for MScalar
static void test_toint(skiatest::Reporter* reporter) {
SkMatrix44 mat(SkMatrix44::kUninitialized_Constructor);
mat.setScale(3, 3, 3);
SkMScalar sum = SkMScalarFloor(mat.get(0, 0)) +
SkMScalarRound(mat.get(1, 0)) +
SkMScalarCeil(mat.get(2, 0));
int isum = SkMScalarFloorToInt(mat.get(0, 1)) +
SkMScalarRoundToInt(mat.get(1, 2)) +
SkMScalarCeilToInt(mat.get(2, 3));
REPORTER_ASSERT(reporter, sum >= 0);
REPORTER_ASSERT(reporter, isum >= 0);
REPORTER_ASSERT(reporter, static_cast<SkMScalar>(isum) == SkIntToMScalar(isum));
}
DEF_TEST(Matrix44, reporter) {
SkMatrix44 mat(SkMatrix44::kUninitialized_Constructor);
SkMatrix44 inverse(SkMatrix44::kUninitialized_Constructor);
SkMatrix44 iden1(SkMatrix44::kUninitialized_Constructor);
SkMatrix44 iden2(SkMatrix44::kUninitialized_Constructor);
SkMatrix44 rot(SkMatrix44::kUninitialized_Constructor);
mat.setTranslate(1, 1, 1);
mat.invert(&inverse);
iden1.setConcat(mat, inverse);
REPORTER_ASSERT(reporter, is_identity(iden1));
mat.setScale(2, 2, 2);
mat.invert(&inverse);
iden1.setConcat(mat, inverse);
REPORTER_ASSERT(reporter, is_identity(iden1));
mat.setScale(SK_MScalar1/2, SK_MScalar1/2, SK_MScalar1/2);
mat.invert(&inverse);
iden1.setConcat(mat, inverse);
REPORTER_ASSERT(reporter, is_identity(iden1));
mat.setScale(3, 3, 3);
rot.setRotateDegreesAbout(0, 0, -1, 90);
mat.postConcat(rot);
REPORTER_ASSERT(reporter, mat.invert(NULL));
mat.invert(&inverse);
iden1.setConcat(mat, inverse);
REPORTER_ASSERT(reporter, is_identity(iden1));
iden2.setConcat(inverse, mat);
REPORTER_ASSERT(reporter, is_identity(iden2));
// test tiny-valued matrix inverse
mat.reset();
mat.setScale(1.0e-12, 1.0e-12, 1.0e-12);
rot.setRotateDegreesAbout(0, 0, -1, 90);
mat.postConcat(rot);
mat.postTranslate(1.0e-12, 1.0e-12, 1.0e-12);
REPORTER_ASSERT(reporter, mat.invert(NULL));
mat.invert(&inverse);
iden1.setConcat(mat, inverse);
REPORTER_ASSERT(reporter, is_identity(iden1));
// test mixed-valued matrix inverse
mat.reset();
mat.setScale(1.0e-10, 3.0, 1.0e+10);
rot.setRotateDegreesAbout(0, 0, -1, 90);
mat.postConcat(rot);
mat.postTranslate(1.0e+10, 3.0, 1.0e-10);
REPORTER_ASSERT(reporter, mat.invert(NULL));
mat.invert(&inverse);
iden1.setConcat(mat, inverse);
REPORTER_ASSERT(reporter, is_identity(iden1));
// test degenerate matrix
mat.reset();
mat.set3x3(1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0);
REPORTER_ASSERT(reporter, !mat.invert(NULL));
// test rol/col Major getters
{
mat.setTranslate(2, 3, 4);
float dataf[16];
double datad[16];
mat.asColMajorf(dataf);
assert16<float>(reporter, dataf,
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
2, 3, 4, 1);
mat.asColMajord(datad);
assert16<double>(reporter, datad, 1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
2, 3, 4, 1);
mat.asRowMajorf(dataf);
assert16<float>(reporter, dataf, 1, 0, 0, 2,
0, 1, 0, 3,
0, 0, 1, 4,
0, 0, 0, 1);
mat.asRowMajord(datad);
assert16<double>(reporter, datad, 1, 0, 0, 2,
0, 1, 0, 3,
0, 0, 1, 4,
0, 0, 0, 1);
}
test_concat(reporter);
if (false) { // avoid bit rot, suppress warning (working on making this pass)
test_common_angles(reporter);
}
test_constructor(reporter);
test_gettype(reporter);
test_determinant(reporter);
test_invert(reporter);
test_transpose(reporter);
test_get_set_double(reporter);
test_set_row_col_major(reporter);
test_translate(reporter);
test_scale(reporter);
test_map2(reporter);
test_3x3_conversion(reporter);
test_has_perspective(reporter);
test_preserves_2d_axis_alignment(reporter);
test_toint(reporter);
}
|