1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkInterpolator.h"
#include "Test.h"
static SkScalar* iset(SkScalar array[3], int a, int b, int c) {
array[0] = SkIntToScalar(a);
array[1] = SkIntToScalar(b);
array[2] = SkIntToScalar(c);
return array;
}
DEF_TEST(Interpolator, reporter) {
SkInterpolator inter(3, 2);
SkScalar v1[3], v2[3], v[3];
SkInterpolator::Result result;
inter.setKeyFrame(0, 100, iset(v1, 10, 20, 30), 0);
inter.setKeyFrame(1, 200, iset(v2, 110, 220, 330));
result = inter.timeToValues(0, v);
REPORTER_ASSERT(reporter, result == SkInterpolator::kFreezeStart_Result);
REPORTER_ASSERT(reporter, memcmp(v, v1, sizeof(v)) == 0);
result = inter.timeToValues(99, v);
REPORTER_ASSERT(reporter, result == SkInterpolator::kFreezeStart_Result);
REPORTER_ASSERT(reporter, memcmp(v, v1, sizeof(v)) == 0);
result = inter.timeToValues(100, v);
REPORTER_ASSERT(reporter, result == SkInterpolator::kNormal_Result);
REPORTER_ASSERT(reporter, memcmp(v, v1, sizeof(v)) == 0);
result = inter.timeToValues(200, v);
REPORTER_ASSERT(reporter, result == SkInterpolator::kNormal_Result);
REPORTER_ASSERT(reporter, memcmp(v, v2, sizeof(v)) == 0);
result = inter.timeToValues(201, v);
REPORTER_ASSERT(reporter, result == SkInterpolator::kFreezeEnd_Result);
REPORTER_ASSERT(reporter, memcmp(v, v2, sizeof(v)) == 0);
result = inter.timeToValues(150, v);
REPORTER_ASSERT(reporter, result == SkInterpolator::kNormal_Result);
// Found failing when we re-enabled this test:
#if 0
SkScalar vv[3];
REPORTER_ASSERT(reporter, memcmp(v, iset(vv, 60, 120, 180), sizeof(v)) == 0);
#endif
result = inter.timeToValues(125, v);
REPORTER_ASSERT(reporter, result == SkInterpolator::kNormal_Result);
result = inter.timeToValues(175, v);
REPORTER_ASSERT(reporter, result == SkInterpolator::kNormal_Result);
for (SkScalar val = -0.1f; val <= 1.1f; val += 0.1f) {
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkTPin(0.f, val, 1.f),
SkUnitCubicInterp(val, 1.f/3, 1.f/3, 2.f/3, 2.f/3)));
}
// These numbers come from
// http://www.w3.org/TR/css3-transitions/#transition-timing-function_tag.
const SkScalar testTransitions[][4] = {
{ 0.25f, 0.1f, 0.25f, 1 }, // ease
{ 0.42f, 0, 1, 1 }, // ease in
{ 0, 0, 0.58f, 1 }, // ease out
{ 0.42f, 0, 0.58f, 1 }, // ease in out
};
const SkScalar expectedOutput[][5] = {
{ 0.0947876f, 0.513367f, 0.80249f, 0.940796f, 0.994263f }, // ease
{ 0.0170288f, 0.129639f, 0.31543f, 0.554749f, 0.839417f }, // ease in
{ 0.160583f, 0.445251f, 0.684692f, 0.870361f, 0.982971f }, // ease out
{ 0.0197144f, 0.187439f, 0.500122f, 0.812561f, 0.980286f }, // ease in out
};
int i = 0;
for (const SkScalar* t : testTransitions) {
int j = 0;
for (SkScalar val = 0.1f; val < 1; val += 0.2f) {
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(expectedOutput[i][j++],
SkUnitCubicInterp(val, t[0], t[1], t[2], t[3])));
}
++i;
}
}
|