aboutsummaryrefslogtreecommitdiffhomepage
path: root/tests/ImageTest.cpp
blob: 87fc8fd52929350871de4cc17dcf3e3ca90665b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include <functional>
#include <initializer_list>
#include "DMGpuSupport.h"

#include "SkAutoPixmapStorage.h"
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkData.h"
#include "SkDevice.h"
#include "SkImageEncoder.h"
#include "SkImageGenerator.h"
#include "SkImage_Base.h"
#include "SkPicture.h"
#include "SkPictureRecorder.h"
#include "SkPixelSerializer.h"
#include "SkRRect.h"
#include "SkStream.h"
#include "SkSurface.h"
#include "SkUtils.h"
#include "Test.h"

using namespace sk_gpu_test;

static void assert_equal(skiatest::Reporter* reporter, SkImage* a, const SkIRect* subsetA,
                         SkImage* b) {
    const int widthA = subsetA ? subsetA->width() : a->width();
    const int heightA = subsetA ? subsetA->height() : a->height();

    REPORTER_ASSERT(reporter, widthA == b->width());
    REPORTER_ASSERT(reporter, heightA == b->height());

    // see https://bug.skia.org/3965
    //REPORTER_ASSERT(reporter, a->isOpaque() == b->isOpaque());

    SkImageInfo info = SkImageInfo::MakeN32(widthA, heightA,
                                        a->isOpaque() ? kOpaque_SkAlphaType : kPremul_SkAlphaType);
    SkAutoPixmapStorage pmapA, pmapB;
    pmapA.alloc(info);
    pmapB.alloc(info);

    const int srcX = subsetA ? subsetA->x() : 0;
    const int srcY = subsetA ? subsetA->y() : 0;

    REPORTER_ASSERT(reporter, a->readPixels(pmapA, srcX, srcY));
    REPORTER_ASSERT(reporter, b->readPixels(pmapB, 0, 0));

    const size_t widthBytes = widthA * info.bytesPerPixel();
    for (int y = 0; y < heightA; ++y) {
        REPORTER_ASSERT(reporter, !memcmp(pmapA.addr32(0, y), pmapB.addr32(0, y), widthBytes));
    }
}
static void draw_image_test_pattern(SkCanvas* canvas) {
    canvas->clear(SK_ColorWHITE);
    SkPaint paint;
    paint.setColor(SK_ColorBLACK);
    canvas->drawRect(SkRect::MakeXYWH(5, 5, 10, 10), paint);
}
static sk_sp<SkImage> create_image() {
    const SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
    auto surface(SkSurface::MakeRaster(info));
    draw_image_test_pattern(surface->getCanvas());
    return surface->makeImageSnapshot();
}
static sk_sp<SkImage> create_image_565() {
    const SkImageInfo info = SkImageInfo::Make(20, 20, kRGB_565_SkColorType, kOpaque_SkAlphaType);
    auto surface(SkSurface::MakeRaster(info));
    draw_image_test_pattern(surface->getCanvas());
    return surface->makeImageSnapshot();
}
static sk_sp<SkImage> create_image_ct() {
    SkPMColor colors[] = {
        SkPreMultiplyARGB(0xFF, 0xFF, 0xFF, 0x00),
        SkPreMultiplyARGB(0x80, 0x00, 0xA0, 0xFF),
        SkPreMultiplyARGB(0xFF, 0xBB, 0x00, 0xBB)
    };
    SkAutoTUnref<SkColorTable> colorTable(new SkColorTable(colors, SK_ARRAY_COUNT(colors)));
    uint8_t data[] = {
        0, 0, 0, 0, 0,
        0, 1, 1, 1, 0,
        0, 1, 2, 1, 0,
        0, 1, 1, 1, 0,
        0, 0, 0, 0, 0
    };
    SkImageInfo info = SkImageInfo::Make(5, 5, kIndex_8_SkColorType, kPremul_SkAlphaType);
    return SkImage::MakeRasterCopy(SkPixmap(info, data, 5, colorTable));
}
static SkData* create_image_data(SkImageInfo* info) {
    *info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
    const size_t rowBytes = info->minRowBytes();
    SkAutoTUnref<SkData> data(SkData::NewUninitialized(rowBytes * info->height()));
    {
        SkBitmap bm;
        bm.installPixels(*info, data->writable_data(), rowBytes);
        SkCanvas canvas(bm);
        draw_image_test_pattern(&canvas);
    }
    return data.release();
}
static sk_sp<SkImage> create_data_image() {
    SkImageInfo info;
    sk_sp<SkData> data(create_image_data(&info));
    return SkImage::MakeRasterData(info, data, info.minRowBytes());
}
#if SK_SUPPORT_GPU // not gpu-specific but currently only used in GPU tests
static sk_sp<SkImage> create_picture_image() {
    SkPictureRecorder recorder;
    SkCanvas* canvas = recorder.beginRecording(10, 10);
    canvas->clear(SK_ColorCYAN);
    return SkImage::MakeFromPicture(recorder.finishRecordingAsPicture(), SkISize::Make(10, 10),
                                    nullptr, nullptr);
};
#endif
// Want to ensure that our Release is called when the owning image is destroyed
struct RasterDataHolder {
    RasterDataHolder() : fReleaseCount(0) {}
    SkAutoTUnref<SkData> fData;
    int fReleaseCount;
    static void Release(const void* pixels, void* context) {
        RasterDataHolder* self = static_cast<RasterDataHolder*>(context);
        self->fReleaseCount++;
        self->fData.reset();
    }
};
static sk_sp<SkImage> create_rasterproc_image(RasterDataHolder* dataHolder) {
    SkASSERT(dataHolder);
    SkImageInfo info;
    SkAutoTUnref<SkData> data(create_image_data(&info));
    dataHolder->fData.reset(SkRef(data.get()));
    return SkImage::MakeFromRaster(SkPixmap(info, data->data(), info.minRowBytes()),
                                   RasterDataHolder::Release, dataHolder);
}
static sk_sp<SkImage> create_codec_image() {
    SkImageInfo info;
    SkAutoTUnref<SkData> data(create_image_data(&info));
    SkBitmap bitmap;
    bitmap.installPixels(info, data->writable_data(), info.minRowBytes());
    sk_sp<SkData> src(
        SkImageEncoder::EncodeData(bitmap, SkImageEncoder::kPNG_Type, 100));
    return SkImage::MakeFromEncoded(src);
}
#if SK_SUPPORT_GPU
static sk_sp<SkImage> create_gpu_image(GrContext* context) {
    const SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
    auto surface(SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, info));
    draw_image_test_pattern(surface->getCanvas());
    return surface->makeImageSnapshot();
}
#endif

static void test_encode(skiatest::Reporter* reporter, SkImage* image) {
    const SkIRect ir = SkIRect::MakeXYWH(5, 5, 10, 10);
    sk_sp<SkData> origEncoded(image->encode());
    REPORTER_ASSERT(reporter, origEncoded);
    REPORTER_ASSERT(reporter, origEncoded->size() > 0);

    sk_sp<SkImage> decoded(SkImage::MakeFromEncoded(origEncoded));
    REPORTER_ASSERT(reporter, decoded);
    assert_equal(reporter, image, nullptr, decoded.get());

    // Now see if we can instantiate an image from a subset of the surface/origEncoded

    decoded = SkImage::MakeFromEncoded(origEncoded, &ir);
    REPORTER_ASSERT(reporter, decoded);
    assert_equal(reporter, image, &ir, decoded.get());
}

DEF_TEST(ImageEncode, reporter) {
    test_encode(reporter, create_image().get());
}

#if SK_SUPPORT_GPU
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageEncode_Gpu, reporter, ctxInfo) {
    test_encode(reporter, create_gpu_image(ctxInfo.fGrContext).get());
}
#endif

namespace {

const char* kSerializedData = "serialized";

class MockSerializer : public SkPixelSerializer {
public:
    MockSerializer(SkData* (*func)()) : fFunc(func), fDidEncode(false) { }

    bool didEncode() const { return fDidEncode; }

protected:
    bool onUseEncodedData(const void*, size_t) override {
        return false;
    }

    SkData* onEncode(const SkPixmap&) override {
        fDidEncode = true;
        return fFunc();
    }

private:
    SkData* (*fFunc)();
    bool fDidEncode;

    typedef SkPixelSerializer INHERITED;
};

} // anonymous namespace

// Test that SkImage encoding observes custom pixel serializers.
DEF_TEST(Image_Encode_Serializer, reporter) {
    MockSerializer serializer([]() -> SkData* { return SkData::NewWithCString(kSerializedData); });
    sk_sp<SkImage> image(create_image());
    SkAutoTUnref<SkData> encoded(image->encode(&serializer));
    SkAutoTUnref<SkData> reference(SkData::NewWithCString(kSerializedData));

    REPORTER_ASSERT(reporter, serializer.didEncode());
    REPORTER_ASSERT(reporter, encoded);
    REPORTER_ASSERT(reporter, encoded->size() > 0);
    REPORTER_ASSERT(reporter, encoded->equals(reference));
}

// Test that image encoding failures do not break picture serialization/deserialization.
DEF_TEST(Image_Serialize_Encoding_Failure, reporter) {
    auto surface(SkSurface::MakeRasterN32Premul(100, 100));
    surface->getCanvas()->clear(SK_ColorGREEN);
    sk_sp<SkImage> image(surface->makeImageSnapshot());
    REPORTER_ASSERT(reporter, image);

    SkPictureRecorder recorder;
    SkCanvas* canvas = recorder.beginRecording(100, 100);
    canvas->drawImage(image, 0, 0);
    sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture());
    REPORTER_ASSERT(reporter, picture);
    REPORTER_ASSERT(reporter, picture->approximateOpCount() > 0);

    MockSerializer emptySerializer([]() -> SkData* { return SkData::NewEmpty(); });
    MockSerializer nullSerializer([]() -> SkData* { return nullptr; });
    MockSerializer* serializers[] = { &emptySerializer, &nullSerializer };

    for (size_t i = 0; i < SK_ARRAY_COUNT(serializers); ++i) {
        SkDynamicMemoryWStream wstream;
        REPORTER_ASSERT(reporter, !serializers[i]->didEncode());
        picture->serialize(&wstream, serializers[i]);
        REPORTER_ASSERT(reporter, serializers[i]->didEncode());

        SkAutoTDelete<SkStream> rstream(wstream.detachAsStream());
        sk_sp<SkPicture> deserialized(SkPicture::MakeFromStream(rstream));
        REPORTER_ASSERT(reporter, deserialized);
        REPORTER_ASSERT(reporter, deserialized->approximateOpCount() > 0);
    }
}

DEF_TEST(Image_NewRasterCopy, reporter) {
    const SkPMColor red =   SkPackARGB32(0xFF, 0xFF, 0, 0);
    const SkPMColor green = SkPackARGB32(0xFF, 0, 0xFF, 0);
    const SkPMColor blue =  SkPackARGB32(0xFF, 0, 0, 0xFF);
    SkPMColor colors[] = { red, green, blue, 0 };
    SkAutoTUnref<SkColorTable> ctable(new SkColorTable(colors, SK_ARRAY_COUNT(colors)));
    // The colortable made a copy, so we can trash the original colors
    memset(colors, 0xFF, sizeof(colors));

    const SkImageInfo srcInfo = SkImageInfo::Make(2, 2, kIndex_8_SkColorType, kPremul_SkAlphaType);
    const size_t srcRowBytes = 2 * sizeof(uint8_t);
    uint8_t indices[] = { 0, 1, 2, 3 };
    sk_sp<SkImage> image(SkImage::MakeRasterCopy(SkPixmap(srcInfo, indices, srcRowBytes, ctable)));
    // The image made a copy, so we can trash the original indices
    memset(indices, 0xFF, sizeof(indices));

    const SkImageInfo dstInfo = SkImageInfo::MakeN32Premul(2, 2);
    const size_t dstRowBytes = 2 * sizeof(SkPMColor);
    SkPMColor pixels[4];
    memset(pixels, 0xFF, sizeof(pixels));   // init with values we don't expect
    image->readPixels(dstInfo, pixels, dstRowBytes, 0, 0);
    REPORTER_ASSERT(reporter, red == pixels[0]);
    REPORTER_ASSERT(reporter, green == pixels[1]);
    REPORTER_ASSERT(reporter, blue == pixels[2]);
    REPORTER_ASSERT(reporter, 0 == pixels[3]);
}

// Test that a draw that only partially covers the drawing surface isn't
// interpreted as covering the entire drawing surface (i.e., exercise one of the
// conditions of SkCanvas::wouldOverwriteEntireSurface()).
DEF_TEST(Image_RetainSnapshot, reporter) {
    const SkPMColor red   = SkPackARGB32(0xFF, 0xFF, 0, 0);
    const SkPMColor green = SkPackARGB32(0xFF, 0, 0xFF, 0);
    SkImageInfo info = SkImageInfo::MakeN32Premul(2, 2);
    auto surface(SkSurface::MakeRaster(info));
    surface->getCanvas()->clear(0xFF00FF00);

    SkPMColor pixels[4];
    memset(pixels, 0xFF, sizeof(pixels));   // init with values we don't expect
    const SkImageInfo dstInfo = SkImageInfo::MakeN32Premul(2, 2);
    const size_t dstRowBytes = 2 * sizeof(SkPMColor);

    sk_sp<SkImage> image1(surface->makeImageSnapshot());
    REPORTER_ASSERT(reporter, image1->readPixels(dstInfo, pixels, dstRowBytes, 0, 0));
    for (size_t i = 0; i < SK_ARRAY_COUNT(pixels); ++i) {
        REPORTER_ASSERT(reporter, pixels[i] == green);
    }

    SkPaint paint;
    paint.setXfermodeMode(SkXfermode::kSrc_Mode);
    paint.setColor(SK_ColorRED);

    surface->getCanvas()->drawRect(SkRect::MakeXYWH(1, 1, 1, 1), paint);

    sk_sp<SkImage> image2(surface->makeImageSnapshot());
    REPORTER_ASSERT(reporter, image2->readPixels(dstInfo, pixels, dstRowBytes, 0, 0));
    REPORTER_ASSERT(reporter, pixels[0] == green);
    REPORTER_ASSERT(reporter, pixels[1] == green);
    REPORTER_ASSERT(reporter, pixels[2] == green);
    REPORTER_ASSERT(reporter, pixels[3] == red);
}

/////////////////////////////////////////////////////////////////////////////////////////////////

static void make_bitmap_mutable(SkBitmap* bm) {
    bm->allocN32Pixels(10, 10);
}

static void make_bitmap_immutable(SkBitmap* bm) {
    bm->allocN32Pixels(10, 10);
    bm->setImmutable();
}

DEF_TEST(image_newfrombitmap, reporter) {
    const struct {
        void (*fMakeProc)(SkBitmap*);
        bool fExpectPeekSuccess;
        bool fExpectSharedID;
        bool fExpectLazy;
    } rec[] = {
        { make_bitmap_mutable,      true,   false, false },
        { make_bitmap_immutable,    true,   true,  false },
    };

    for (size_t i = 0; i < SK_ARRAY_COUNT(rec); ++i) {
        SkBitmap bm;
        rec[i].fMakeProc(&bm);

        sk_sp<SkImage> image(SkImage::MakeFromBitmap(bm));
        SkPixmap pmap;

        const bool sharedID = (image->uniqueID() == bm.getGenerationID());
        REPORTER_ASSERT(reporter, sharedID == rec[i].fExpectSharedID);

        const bool peekSuccess = image->peekPixels(&pmap);
        REPORTER_ASSERT(reporter, peekSuccess == rec[i].fExpectPeekSuccess);

        const bool lazy = image->isLazyGenerated();
        REPORTER_ASSERT(reporter, lazy == rec[i].fExpectLazy);
    }
}

///////////////////////////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU

#include "SkBitmapCache.h"

/*
 *  This tests the caching (and preemptive purge) of the raster equivalent of a gpu-image.
 *  We cache it for performance when drawing into a raster surface.
 *
 *  A cleaner test would know if each drawImage call triggered a read-back from the gpu,
 *  but we don't have that facility (at the moment) so we use a little internal knowledge
 *  of *how* the raster version is cached, and look for that.
 */
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkImage_Gpu2Cpu, reporter, ctxInfo) {
    SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType);
    sk_sp<SkImage> image(create_gpu_image(ctxInfo.fGrContext));
    const uint32_t uniqueID = image->uniqueID();

    auto surface(SkSurface::MakeRaster(info));

    // now we can test drawing a gpu-backed image into a cpu-backed surface

    {
        SkBitmap cachedBitmap;
        REPORTER_ASSERT(reporter, !SkBitmapCache::Find(uniqueID, &cachedBitmap));
    }

    surface->getCanvas()->drawImage(image, 0, 0);
    {
        SkBitmap cachedBitmap;
        if (SkBitmapCache::Find(uniqueID, &cachedBitmap)) {
            REPORTER_ASSERT(reporter, cachedBitmap.getGenerationID() == uniqueID);
            REPORTER_ASSERT(reporter, cachedBitmap.isImmutable());
            REPORTER_ASSERT(reporter, cachedBitmap.getPixels());
        } else {
            // unexpected, but not really a bug, since the cache is global and this test may be
            // run w/ other threads competing for its budget.
            SkDebugf("SkImage_Gpu2Cpu : cachedBitmap was already purged\n");
        }
    }

    image.reset(nullptr);
    {
        SkBitmap cachedBitmap;
        REPORTER_ASSERT(reporter, !SkBitmapCache::Find(uniqueID, &cachedBitmap));
    }
}

DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkImage_newTextureImage, reporter, contextInfo) {
    GrContext* context = contextInfo.fGrContext;
    sk_gpu_test::GLTestContext* glContext = contextInfo.fGLContext;

    GrContextFactory otherFactory;
    ContextInfo otherContextInfo =
        otherFactory.getContextInfo(GrContextFactory::kNativeGL_ContextType);
    glContext->makeCurrent();

    std::function<sk_sp<SkImage>()> imageFactories[] = {
        create_image,
        create_codec_image,
        create_data_image,
        // Create an image from a picture.
        create_picture_image,
        // Create a texture image.
        [context] { return create_gpu_image(context); },
        // Create a texture image in a another GrContext.
        [glContext, otherContextInfo] {
            otherContextInfo.fGLContext->makeCurrent();
            sk_sp<SkImage> otherContextImage = create_gpu_image(otherContextInfo.fGrContext);
            glContext->makeCurrent();
            return otherContextImage;
        }
    };

    for (auto factory : imageFactories) {
        sk_sp<SkImage> image(factory());
        if (!image) {
            ERRORF(reporter, "Error creating image.");
            continue;
        }
        GrTexture* origTexture = as_IB(image)->peekTexture();

        sk_sp<SkImage> texImage(image->makeTextureImage(context));
        if (!texImage) {
            // We execpt to fail if image comes from a different GrContext.
            if (!origTexture || origTexture->getContext() == context) {
                ERRORF(reporter, "newTextureImage failed.");
            }
            continue;
        }
        GrTexture* copyTexture = as_IB(texImage)->peekTexture();
        if (!copyTexture) {
            ERRORF(reporter, "newTextureImage returned non-texture image.");
            continue;
        }
        if (origTexture) {
            if (origTexture != copyTexture) {
                ERRORF(reporter, "newTextureImage made unnecessary texture copy.");
            }
        }
        if (image->width() != texImage->width() || image->height() != texImage->height()) {
            ERRORF(reporter, "newTextureImage changed the image size.");
        }
        if (image->isOpaque() != texImage->isOpaque()) {
            ERRORF(reporter, "newTextureImage changed image opaqueness.");
        }
    }
}
#endif

// https://bug.skia.org/4390
DEF_TEST(ImageFromIndex8Bitmap, r) {
    SkPMColor pmColors[1] = {SkPreMultiplyColor(SK_ColorWHITE)};
    SkBitmap bm;
    SkAutoTUnref<SkColorTable> ctable(
            new SkColorTable(pmColors, SK_ARRAY_COUNT(pmColors)));
    SkImageInfo info =
            SkImageInfo::Make(1, 1, kIndex_8_SkColorType, kPremul_SkAlphaType);
    bm.allocPixels(info, nullptr, ctable);
    SkAutoLockPixels autoLockPixels(bm);
    *bm.getAddr8(0, 0) = 0;
    sk_sp<SkImage> img(SkImage::MakeFromBitmap(bm));
    REPORTER_ASSERT(r, img != nullptr);
}

class EmptyGenerator : public SkImageGenerator {
public:
    EmptyGenerator() : SkImageGenerator(SkImageInfo::MakeN32Premul(0, 0)) {}
};

DEF_TEST(ImageEmpty, reporter) {
    const SkImageInfo info = SkImageInfo::Make(0, 0, kN32_SkColorType, kPremul_SkAlphaType);
    SkPixmap pmap(info, nullptr, 0);
    REPORTER_ASSERT(reporter, nullptr == SkImage::MakeRasterCopy(pmap));
    REPORTER_ASSERT(reporter, nullptr == SkImage::MakeRasterData(info, nullptr, 0));
    REPORTER_ASSERT(reporter, nullptr == SkImage::MakeFromRaster(pmap, nullptr, nullptr));
    REPORTER_ASSERT(reporter, nullptr == SkImage::MakeFromGenerator(new EmptyGenerator));
}

DEF_TEST(ImageDataRef, reporter) {
    SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1);
    size_t rowBytes = info.minRowBytes();
    size_t size = info.getSafeSize(rowBytes);
    sk_sp<SkData> data = SkData::MakeUninitialized(size);
    REPORTER_ASSERT(reporter, data->unique());
    sk_sp<SkImage> image = SkImage::MakeRasterData(info, data, rowBytes);
    REPORTER_ASSERT(reporter, !data->unique());
    image.reset();
    REPORTER_ASSERT(reporter, data->unique());
}

static bool has_pixels(const SkPMColor pixels[], int count, SkPMColor expected) {
    for (int i = 0; i < count; ++i) {
        if (pixels[i] != expected) {
            return false;
        }
    }
    return true;
}

static void test_read_pixels(skiatest::Reporter* reporter, SkImage* image) {
    const SkPMColor expected = SkPreMultiplyColor(SK_ColorWHITE);
    const SkPMColor notExpected = ~expected;

    const int w = 2, h = 2;
    const size_t rowBytes = w * sizeof(SkPMColor);
    SkPMColor pixels[w*h];

    SkImageInfo info;

    info = SkImageInfo::MakeUnknown(w, h);
    REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, 0));

    // out-of-bounds should fail
    info = SkImageInfo::MakeN32Premul(w, h);
    REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, -w, 0));
    REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, -h));
    REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, image->width(), 0));
    REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, image->height()));

    // top-left should succeed
    sk_memset32(pixels, notExpected, w*h);
    REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, 0, 0));
    REPORTER_ASSERT(reporter, has_pixels(pixels, w*h, expected));

    // bottom-right should succeed
    sk_memset32(pixels, notExpected, w*h);
    REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes,
                                                image->width() - w, image->height() - h));
    REPORTER_ASSERT(reporter, has_pixels(pixels, w*h, expected));

    // partial top-left should succeed
    sk_memset32(pixels, notExpected, w*h);
    REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, -1, -1));
    REPORTER_ASSERT(reporter, pixels[3] == expected);
    REPORTER_ASSERT(reporter, has_pixels(pixels, w*h - 1, notExpected));

    // partial bottom-right should succeed
    sk_memset32(pixels, notExpected, w*h);
    REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes,
                                                image->width() - 1, image->height() - 1));
    REPORTER_ASSERT(reporter, pixels[0] == expected);
    REPORTER_ASSERT(reporter, has_pixels(&pixels[1], w*h - 1, notExpected));
}
DEF_TEST(ImageReadPixels, reporter) {
    sk_sp<SkImage> image(create_image());
    test_read_pixels(reporter, image.get());

    image = create_data_image();
    test_read_pixels(reporter, image.get());

    RasterDataHolder dataHolder;
    image = create_rasterproc_image(&dataHolder);
    test_read_pixels(reporter, image.get());
    image.reset();
    REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount);

    image = create_codec_image();
    test_read_pixels(reporter, image.get());
}
#if SK_SUPPORT_GPU
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageReadPixels_Gpu, reporter, ctxInfo) {
    test_read_pixels(reporter, create_gpu_image(ctxInfo.fGrContext).get());
}
#endif

static void check_legacy_bitmap(skiatest::Reporter* reporter, const SkImage* image,
                                const SkBitmap& bitmap, SkImage::LegacyBitmapMode mode) {
    REPORTER_ASSERT(reporter, image->width() == bitmap.width());
    REPORTER_ASSERT(reporter, image->height() == bitmap.height());
    REPORTER_ASSERT(reporter, image->isOpaque() == bitmap.isOpaque());

    if (SkImage::kRO_LegacyBitmapMode == mode) {
        REPORTER_ASSERT(reporter, bitmap.isImmutable());
    }

    SkAutoLockPixels alp(bitmap);
    REPORTER_ASSERT(reporter, bitmap.getPixels());

    const SkImageInfo info = SkImageInfo::MakeN32(1, 1, bitmap.alphaType());
    SkPMColor imageColor;
    REPORTER_ASSERT(reporter, image->readPixels(info, &imageColor, sizeof(SkPMColor), 0, 0));
    REPORTER_ASSERT(reporter, imageColor == *bitmap.getAddr32(0, 0));
}

static void test_legacy_bitmap(skiatest::Reporter* reporter, const SkImage* image, SkImage::LegacyBitmapMode mode) {
    SkBitmap bitmap;
    REPORTER_ASSERT(reporter, image->asLegacyBitmap(&bitmap, mode));
    check_legacy_bitmap(reporter, image, bitmap, mode);

    // Test subsetting to exercise the rowBytes logic.
    SkBitmap tmp;
    REPORTER_ASSERT(reporter, bitmap.extractSubset(&tmp, SkIRect::MakeWH(image->width() / 2,
                                                                         image->height() / 2)));
    sk_sp<SkImage> subsetImage(SkImage::MakeFromBitmap(tmp));
    REPORTER_ASSERT(reporter, subsetImage.get());

    SkBitmap subsetBitmap;
    REPORTER_ASSERT(reporter, subsetImage->asLegacyBitmap(&subsetBitmap, mode));
    check_legacy_bitmap(reporter, subsetImage.get(), subsetBitmap, mode);
}
DEF_TEST(ImageLegacyBitmap, reporter) {
    const SkImage::LegacyBitmapMode modes[] = {
        SkImage::kRO_LegacyBitmapMode,
        SkImage::kRW_LegacyBitmapMode,
    };
    for (auto& mode : modes) {
        sk_sp<SkImage> image(create_image());
        test_legacy_bitmap(reporter, image.get(), mode);

        image = create_data_image();
        test_legacy_bitmap(reporter, image.get(), mode);

        RasterDataHolder dataHolder;
        image = create_rasterproc_image(&dataHolder);
        test_legacy_bitmap(reporter, image.get(), mode);
        image.reset();
        REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount);

        image = create_codec_image();
        test_legacy_bitmap(reporter, image.get(), mode);
    }
}
#if SK_SUPPORT_GPU
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageLegacyBitmap_Gpu, reporter, ctxInfo) {
    const SkImage::LegacyBitmapMode modes[] = {
        SkImage::kRO_LegacyBitmapMode,
        SkImage::kRW_LegacyBitmapMode,
    };
    for (auto& mode : modes) {
        sk_sp<SkImage> image(create_gpu_image(ctxInfo.fGrContext));
        test_legacy_bitmap(reporter, image.get(), mode);
    }
}
#endif

static void test_peek(skiatest::Reporter* reporter, SkImage* image, bool expectPeekSuccess) {
    SkPixmap pm;
    bool success = image->peekPixels(&pm);
    REPORTER_ASSERT(reporter, expectPeekSuccess == success);
    if (success) {
        const SkImageInfo& info = pm.info();
        REPORTER_ASSERT(reporter, 20 == info.width());
        REPORTER_ASSERT(reporter, 20 == info.height());
        REPORTER_ASSERT(reporter, kN32_SkColorType == info.colorType());
        REPORTER_ASSERT(reporter, kPremul_SkAlphaType == info.alphaType() ||
                        kOpaque_SkAlphaType == info.alphaType());
        REPORTER_ASSERT(reporter, info.minRowBytes() <= pm.rowBytes());
        REPORTER_ASSERT(reporter, SkPreMultiplyColor(SK_ColorWHITE) == *pm.addr32(0, 0));
    }
}
DEF_TEST(ImagePeek, reporter) {
    sk_sp<SkImage> image(create_image());
    test_peek(reporter, image.get(), true);

    image = create_data_image();
    test_peek(reporter, image.get(), true);

    RasterDataHolder dataHolder;
    image = create_rasterproc_image(&dataHolder);
    test_peek(reporter, image.get(), true);
    image.reset();
    REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount);

    image = create_codec_image();
    test_peek(reporter, image.get(), false);
}
#if SK_SUPPORT_GPU
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImagePeek_Gpu, reporter, ctxInfo) {
    sk_sp<SkImage> image(create_gpu_image(ctxInfo.fGrContext));
    test_peek(reporter, image.get(), false);
}
#endif

#if SK_SUPPORT_GPU
struct TextureReleaseChecker {
    TextureReleaseChecker() : fReleaseCount(0) {}
    int fReleaseCount;
    static void Release(void* self) {
        static_cast<TextureReleaseChecker*>(self)->fReleaseCount++;
    }
};
static void check_image_color(skiatest::Reporter* reporter, SkImage* image, SkPMColor expected) {
    const SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1);
    SkPMColor pixel;
    REPORTER_ASSERT(reporter, image->readPixels(info, &pixel, sizeof(pixel), 0, 0));
    REPORTER_ASSERT(reporter, pixel == expected);
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkImage_NewFromTexture, reporter, ctxInfo) {
    GrTextureProvider* provider = ctxInfo.fGrContext->textureProvider();
    const int w = 10;
    const int h = 10;
    SkPMColor storage[w * h];
    const SkPMColor expected0 = SkPreMultiplyColor(SK_ColorRED);
    sk_memset32(storage, expected0, w * h);
    GrSurfaceDesc desc;
    desc.fFlags = kRenderTarget_GrSurfaceFlag;  // needs to be a rendertarget for readpixels();
    desc.fOrigin = kDefault_GrSurfaceOrigin;
    desc.fWidth = w;
    desc.fHeight = h;
    desc.fConfig = kSkia8888_GrPixelConfig;
    desc.fSampleCnt = 0;
    SkAutoTUnref<GrTexture> tex(provider->createTexture(desc, SkBudgeted::kNo, storage, w * 4));
    if (!tex) {
        REPORTER_ASSERT(reporter, false);
        return;
    }

    GrBackendTextureDesc backendDesc;
    backendDesc.fConfig = kSkia8888_GrPixelConfig;
    backendDesc.fFlags = kRenderTarget_GrBackendTextureFlag;
    backendDesc.fWidth = w;
    backendDesc.fHeight = h;
    backendDesc.fSampleCnt = 0;
    backendDesc.fTextureHandle = tex->getTextureHandle();
    TextureReleaseChecker releaseChecker;
    sk_sp<SkImage> refImg(
        SkImage::MakeFromTexture(ctxInfo.fGrContext, backendDesc, kPremul_SkAlphaType,
                                 TextureReleaseChecker::Release, &releaseChecker));
    sk_sp<SkImage> cpyImg(SkImage::MakeFromTextureCopy(ctxInfo.fGrContext, backendDesc,
                                                       kPremul_SkAlphaType));

    check_image_color(reporter, refImg.get(), expected0);
    check_image_color(reporter, cpyImg.get(), expected0);

    // Now lets jam new colors into our "external" texture, and see if the images notice
    const SkPMColor expected1 = SkPreMultiplyColor(SK_ColorBLUE);
    sk_memset32(storage, expected1, w * h);
    tex->writePixels(0, 0, w, h, kSkia8888_GrPixelConfig, storage, GrContext::kFlushWrites_PixelOp);

    // The cpy'd one should still see the old color
#if 0
    // There is no guarantee that refImg sees the new color. We are free to have made a copy. Our
    // write pixels call violated the contract with refImg and refImg is now undefined.
    check_image_color(reporter, refImg, expected1);
#endif
    check_image_color(reporter, cpyImg.get(), expected0);

    // Now exercise the release proc
    REPORTER_ASSERT(reporter, 0 == releaseChecker.fReleaseCount);
    refImg.reset(nullptr); // force a release of the image
    REPORTER_ASSERT(reporter, 1 == releaseChecker.fReleaseCount);
}

static void check_images_same(skiatest::Reporter* reporter, const SkImage* a, const SkImage* b) {
    if (a->width() != b->width() || a->height() != b->height()) {
        ERRORF(reporter, "Images must have the same size");
        return;
    }
    if (a->isOpaque() != b->isOpaque()) {
        ERRORF(reporter, "Images must have the same opaquness");
        return;
    }

    SkImageInfo info = SkImageInfo::MakeN32Premul(a->width(), a->height());
    SkAutoPixmapStorage apm;
    SkAutoPixmapStorage bpm;

    apm.alloc(info);
    bpm.alloc(info);

    if (!a->readPixels(apm, 0, 0)) {
        ERRORF(reporter, "Could not read image a's pixels");
        return;
    }
    if (!b->readPixels(bpm, 0, 0)) {
        ERRORF(reporter, "Could not read image b's pixels");
        return;
    }

    for (auto y = 0; y < info.height(); ++y) {
        for (auto x = 0; x < info.width(); ++x) {
            uint32_t pixelA = *apm.addr32(x, y);
            uint32_t pixelB = *bpm.addr32(x, y);
            if (pixelA != pixelB) {
                ERRORF(reporter, "Expected image pixels to be the same. At %d,%d 0x%08x != 0x%08x",
                       x, y, pixelA, pixelB);
                return;
            }
        }
    }
}

DEF_GPUTEST_FOR_RENDERING_CONTEXTS(NewTextureFromPixmap, reporter, ctxInfo) {
    for (auto create : {&create_image,
                        &create_image_565,
                        &create_image_ct}) {
        sk_sp<SkImage> image((*create)());
        if (!image) {
            ERRORF(reporter, "Could not create image");
            return;
        }

        SkPixmap pixmap;
        if (!image->peekPixels(&pixmap)) {
            ERRORF(reporter, "peek failed");
        } else {
            sk_sp<SkImage> texImage(SkImage::MakeTextureFromPixmap(ctxInfo.fGrContext, pixmap,
                                                                   SkBudgeted::kNo));
            if (!texImage) {
                ERRORF(reporter, "NewTextureFromPixmap failed.");
            } else {
                check_images_same(reporter, image.get(), texImage.get());
            }
        }
    }
}

DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DeferredTextureImage, reporter, ctxInfo) {
    GrContext* context = ctxInfo.fGrContext;
    sk_gpu_test::GLTestContext* glContext = ctxInfo.fGLContext;
    SkAutoTUnref<GrContextThreadSafeProxy> proxy(context->threadSafeProxy());

    GrContextFactory otherFactory;
    ContextInfo otherContextInfo =
        otherFactory.getContextInfo(GrContextFactory::kNativeGL_ContextType);

    glContext->makeCurrent();
    REPORTER_ASSERT(reporter, proxy);
    struct {
        std::function<sk_sp<SkImage> ()> fImageFactory;
        bool                       fExpectation;
    } testCases[] = {
        { create_image,          true },
        { create_codec_image,    true },
        { create_data_image,     true },
        { create_picture_image,  false },
        { [context] { return create_gpu_image(context); }, false },
        // Create a texture image in a another GrContext.
        { [glContext, otherContextInfo] {
            otherContextInfo.fGLContext->makeCurrent();
            sk_sp<SkImage> otherContextImage = create_gpu_image(otherContextInfo.fGrContext);
            glContext->makeCurrent();
            return otherContextImage;
          }, false },
    };


    for (auto testCase : testCases) {
        sk_sp<SkImage> image(testCase.fImageFactory());

        // This isn't currently used in the implementation, just set any old values.
        SkImage::DeferredTextureImageUsageParams params;
        params.fQuality = kLow_SkFilterQuality;
        params.fMatrix = SkMatrix::I();

        size_t size = image->getDeferredTextureImageData(*proxy, &params, 1, nullptr);

        static const char *const kFS[] = { "fail", "succeed" };
        if (SkToBool(size) != testCase.fExpectation) {
            ERRORF(reporter,  "This image was expected to %s but did not.",
                   kFS[testCase.fExpectation]);
        }
        if (size) {
            void* buffer = sk_malloc_throw(size);
            void* misaligned = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(buffer) + 3);
            if (image->getDeferredTextureImageData(*proxy, &params, 1, misaligned)) {
                ERRORF(reporter, "Should fail when buffer is misaligned.");
            }
            if (!image->getDeferredTextureImageData(*proxy, &params, 1, buffer)) {
                ERRORF(reporter, "deferred image size succeeded but creation failed.");
            } else {
                for (auto budgeted : { SkBudgeted::kNo, SkBudgeted::kYes }) {
                    sk_sp<SkImage> newImage(
                        SkImage::MakeFromDeferredTextureImageData(context, buffer, budgeted));
                    REPORTER_ASSERT(reporter, newImage != nullptr);
                    if (newImage) {
                        check_images_same(reporter, image.get(), newImage.get());
                    }
                    // The other context should not be able to create images from texture data
                    // created by the original context.
                    sk_sp<SkImage> newImage2(SkImage::MakeFromDeferredTextureImageData(
                        otherContextInfo.fGrContext, buffer, budgeted));
                    REPORTER_ASSERT(reporter, !newImage2);
                    glContext->makeCurrent();
                }
            }
            sk_free(buffer);
        }
    }
}
#endif