aboutsummaryrefslogtreecommitdiffhomepage
path: root/tests/ChecksumTest.cpp
blob: 03194907f518df9f993cf464ccdacb29c0b8c8df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "Test.h"

#include "SkBitmap.h"
#include "SkBitmapChecksummer.h"
#include "SkChecksum.h"
#include "SkCityHash.h"
#include "SkColor.h"

// Word size that is large enough to hold results of any checksum type.
typedef uint64_t checksum_result;

namespace skiatest {
    class ChecksumTestClass : public Test {
    public:
        static Test* Factory(void*) {return SkNEW(ChecksumTestClass); }
    protected:
        virtual void onGetName(SkString* name) { name->set("Checksum"); }
        virtual void onRun(Reporter* reporter) {
            this->fReporter = reporter;
            RunTest();
        }
    private:
        enum Algorithm {
            kSkChecksum,
            kSkCityHash32,
            kSkCityHash64
        };

        // Call Compute(data, size) on the appropriate checksum algorithm,
        // depending on this->fWhichAlgorithm.
        checksum_result ComputeChecksum(const char *data, size_t size) {
            switch(fWhichAlgorithm) {
            case kSkChecksum:
                REPORTER_ASSERT_MESSAGE(fReporter,
                                        reinterpret_cast<uintptr_t>(data) % 4 == 0,
                                        "test data pointer is not 32-bit aligned");
                REPORTER_ASSERT_MESSAGE(fReporter, SkIsAlign4(size),
                                        "test data size is not 32-bit aligned");
                return SkChecksum::Compute(reinterpret_cast<const uint32_t *>(data), size);
            case kSkCityHash32:
                return SkCityHash::Compute32(data, size);
            case kSkCityHash64:
                return SkCityHash::Compute64(data, size);
            default:
                SkString message("fWhichAlgorithm has unknown value ");
                message.appendf("%d", fWhichAlgorithm);
                fReporter->reportFailed(message);
            }
            // we never get here
            return 0;
        }

        // Confirm that the checksum algorithm (specified by fWhichAlgorithm)
        // generates the same results if called twice over the same data.
        void TestChecksumSelfConsistency(size_t buf_size) {
            SkAutoMalloc storage(buf_size);
            char* ptr = reinterpret_cast<char *>(storage.get());

            REPORTER_ASSERT(fReporter,
                            GetTestDataChecksum(8, 0) ==
                            GetTestDataChecksum(8, 0));
            REPORTER_ASSERT(fReporter,
                            GetTestDataChecksum(8, 0) !=
                            GetTestDataChecksum(8, 1));

            sk_bzero(ptr, buf_size);
            checksum_result prev = 0;

            // assert that as we change values (from 0 to non-zero) in
            // our buffer, we get a different value
            for (size_t i = 0; i < buf_size; ++i) {
                ptr[i] = (i & 0x7f) + 1; // need some non-zero value here

                // Try checksums of different-sized chunks, but always
                // 32-bit aligned and big enough to contain all the
                // nonzero bytes.  (Remaining bytes will still be zero
                // from the initial sk_bzero() call.)
                size_t checksum_size = (((i/4)+1)*4);
                REPORTER_ASSERT(fReporter, checksum_size <= buf_size);

                checksum_result curr = ComputeChecksum(ptr, checksum_size);
                REPORTER_ASSERT(fReporter, prev != curr);
                checksum_result again = ComputeChecksum(ptr, checksum_size);
                REPORTER_ASSERT(fReporter, again == curr);
                prev = curr;
            }
        }

        // Return the checksum of a buffer of bytes 'len' long.
        // The pattern of values within the buffer will be consistent
        // for every call, based on 'seed'.
        checksum_result GetTestDataChecksum(size_t len, char seed=0) {
            SkAutoMalloc storage(len);
            char* start = reinterpret_cast<char *>(storage.get());
            char* ptr = start;
            for (size_t i = 0; i < len; ++i) {
                *ptr++ = ((seed+i) & 0x7f);
            }
            checksum_result result = ComputeChecksum(start, len);
            return result;
        }

        // Fill in bitmap with test data.
        void CreateTestBitmap(SkBitmap &bitmap, SkBitmap::Config config, int width, int height,
                              SkColor color) {
            bitmap.setConfig(config, width, height);
            REPORTER_ASSERT(fReporter, bitmap.allocPixels());
            bitmap.setIsOpaque(true);
            bitmap.eraseColor(color);
        }

        void RunTest() {
            // Test self-consistency of checksum algorithms.
            fWhichAlgorithm = kSkChecksum;
            TestChecksumSelfConsistency(128);
            fWhichAlgorithm = kSkCityHash32;
            TestChecksumSelfConsistency(128);
            fWhichAlgorithm = kSkCityHash64;
            TestChecksumSelfConsistency(128);

            // Test checksum results that should be consistent across
            // versions and platforms.
            fWhichAlgorithm = kSkChecksum;
            REPORTER_ASSERT(fReporter, ComputeChecksum(NULL, 0) == 0);
            fWhichAlgorithm = kSkCityHash32;
            REPORTER_ASSERT(fReporter, ComputeChecksum(NULL, 0) == 0xdc56d17a);
            REPORTER_ASSERT(fReporter, GetTestDataChecksum(4)   == 0x616e1132);
            REPORTER_ASSERT(fReporter, GetTestDataChecksum(8)   == 0xeb0fd2d6);
            REPORTER_ASSERT(fReporter, GetTestDataChecksum(128) == 0x5321e430);
            REPORTER_ASSERT(fReporter, GetTestDataChecksum(132) == 0x924a10e4);
            REPORTER_ASSERT(fReporter, GetTestDataChecksum(256) == 0xd4de9dc9);
            REPORTER_ASSERT(fReporter, GetTestDataChecksum(260) == 0xecf0325d);
            fWhichAlgorithm = kSkCityHash64;
            REPORTER_ASSERT(fReporter, ComputeChecksum(NULL, 0) == 0x9ae16a3b2f90404fULL);
            REPORTER_ASSERT(fReporter, GetTestDataChecksum(4)   == 0x82bffd898958e540ULL);
            REPORTER_ASSERT(fReporter, GetTestDataChecksum(8)   == 0xad5a13e1e8e93b98ULL);
            REPORTER_ASSERT(fReporter, GetTestDataChecksum(128) == 0x10b153630af1f395ULL);
            REPORTER_ASSERT(fReporter, GetTestDataChecksum(132) == 0x7db71dc4adcc6647ULL);
            REPORTER_ASSERT(fReporter, GetTestDataChecksum(256) == 0xeee763519b91b010ULL);
            REPORTER_ASSERT(fReporter, GetTestDataChecksum(260) == 0x2fe19e0b2239bc23ULL);

            // TODO: note the weakness exposed by these collisions...
            // We need to improve the SkChecksum algorithm.
            // We would prefer that these asserts FAIL!
            // Filed as https://code.google.com/p/skia/issues/detail?id=981
            // ('SkChecksum algorithm allows for way too many collisions')
            fWhichAlgorithm = kSkChecksum;
            REPORTER_ASSERT(fReporter,
                GetTestDataChecksum(128) == GetTestDataChecksum(256));
            REPORTER_ASSERT(fReporter,
                GetTestDataChecksum(132) == GetTestDataChecksum(260));

            // Test SkBitmapChecksummer
            SkBitmap bitmap;
            // initial test case
            CreateTestBitmap(bitmap, SkBitmap::kARGB_8888_Config, 333, 555, SK_ColorBLUE);
            REPORTER_ASSERT(fReporter,
                            SkBitmapChecksummer::Compute64(bitmap) == 0x18f9df68b1b02f38ULL);
            // same pixel data but different dimensions should yield a different checksum
            CreateTestBitmap(bitmap, SkBitmap::kARGB_8888_Config, 555, 333, SK_ColorBLUE);
            REPORTER_ASSERT(fReporter,
                            SkBitmapChecksummer::Compute64(bitmap) == 0x6b0298183f786c8eULL);
            // same dimensions but different color should yield a different checksum
            CreateTestBitmap(bitmap, SkBitmap::kARGB_8888_Config, 555, 333, SK_ColorGREEN);
            REPORTER_ASSERT(fReporter,
                            SkBitmapChecksummer::Compute64(bitmap) == 0xc6b4b3f6fadaaf37ULL);
            // same pixel colors in a different config should yield the same checksum
            CreateTestBitmap(bitmap, SkBitmap::kARGB_4444_Config, 555, 333, SK_ColorGREEN);
            REPORTER_ASSERT(fReporter,
                            SkBitmapChecksummer::Compute64(bitmap) == 0xc6b4b3f6fadaaf37ULL);
        }

        Reporter* fReporter;
        Algorithm fWhichAlgorithm;
    };

    static TestRegistry gReg(ChecksumTestClass::Factory);
}