1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
|
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTextureCompressor.h"
#include "SkTextureCompressor_Blitter.h"
#include "SkBlitter.h"
#include "SkEndian.h"
// #define COMPRESS_R11_EAC_SLOW 1
// #define COMPRESS_R11_EAC_FAST 1
#define COMPRESS_R11_EAC_FASTEST 1
// Blocks compressed into R11 EAC are represented as follows:
// 0000000000000000000000000000000000000000000000000000000000000000
// |base_cw|mod|mul| ----------------- indices -------------------
//
// To reconstruct the value of a given pixel, we use the formula:
// clamp[0, 2047](base_cw * 8 + 4 + mod_val*mul*8)
//
// mod_val is chosen from a palette of values based on the index of the
// given pixel. The palette is chosen by the value stored in mod.
// This formula returns a value between 0 and 2047, which is converted
// to a float from 0 to 1 in OpenGL.
//
// If mul is zero, then we set mul = 1/8, so that the formula becomes
// clamp[0, 2047](base_cw * 8 + 4 + mod_val)
static const int kNumR11EACPalettes = 16;
static const int kR11EACPaletteSize = 8;
static const int kR11EACModifierPalettes[kNumR11EACPalettes][kR11EACPaletteSize] = {
{-3, -6, -9, -15, 2, 5, 8, 14},
{-3, -7, -10, -13, 2, 6, 9, 12},
{-2, -5, -8, -13, 1, 4, 7, 12},
{-2, -4, -6, -13, 1, 3, 5, 12},
{-3, -6, -8, -12, 2, 5, 7, 11},
{-3, -7, -9, -11, 2, 6, 8, 10},
{-4, -7, -8, -11, 3, 6, 7, 10},
{-3, -5, -8, -11, 2, 4, 7, 10},
{-2, -6, -8, -10, 1, 5, 7, 9},
{-2, -5, -8, -10, 1, 4, 7, 9},
{-2, -4, -8, -10, 1, 3, 7, 9},
{-2, -5, -7, -10, 1, 4, 6, 9},
{-3, -4, -7, -10, 2, 3, 6, 9},
{-1, -2, -3, -10, 0, 1, 2, 9},
{-4, -6, -8, -9, 3, 5, 7, 8},
{-3, -5, -7, -9, 2, 4, 6, 8}
};
#if COMPRESS_R11_EAC_SLOW
// Pack the base codeword, palette, and multiplier into the 64 bits necessary
// to decode it.
static uint64_t pack_r11eac_block(uint16_t base_cw, uint16_t palette, uint16_t multiplier,
uint64_t indices) {
SkASSERT(palette < 16);
SkASSERT(multiplier < 16);
SkASSERT(indices < (static_cast<uint64_t>(1) << 48));
const uint64_t b = static_cast<uint64_t>(base_cw) << 56;
const uint64_t m = static_cast<uint64_t>(multiplier) << 52;
const uint64_t p = static_cast<uint64_t>(palette) << 48;
return SkEndian_SwapBE64(b | m | p | indices);
}
// Given a base codeword, a modifier, and a multiplier, compute the proper
// pixel value in the range [0, 2047].
static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier) {
int ret = (base_cw * 8 + 4) + (modifier * multiplier * 8);
return (ret > 2047)? 2047 : ((ret < 0)? 0 : ret);
}
// Compress a block into R11 EAC format.
// The compression works as follows:
// 1. Find the center of the span of the block's values. Use this as the base codeword.
// 2. Choose a multiplier based roughly on the size of the span of block values
// 3. Iterate through each palette and choose the one with the most accurate
// modifiers.
static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) {
// Find the center of the data...
uint16_t bmin = block[0];
uint16_t bmax = block[0];
for (int i = 1; i < 16; ++i) {
bmin = SkTMin<uint16_t>(bmin, block[i]);
bmax = SkTMax<uint16_t>(bmax, block[i]);
}
uint16_t center = (bmax + bmin) >> 1;
SkASSERT(center <= 255);
// Based on the min and max, we can guesstimate a proper multiplier
// This is kind of a magic choice to start with.
uint16_t multiplier = (bmax - center) / 10;
// Now convert the block to 11 bits and transpose it to match
// the proper layout
uint16_t cblock[16];
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
int srcIdx = i*4+j;
int dstIdx = j*4+i;
cblock[dstIdx] = (block[srcIdx] << 3) | (block[srcIdx] >> 5);
}
}
// Finally, choose the proper palette and indices
uint32_t bestError = 0xFFFFFFFF;
uint64_t bestIndices = 0;
uint16_t bestPalette = 0;
for (uint16_t paletteIdx = 0; paletteIdx < kNumR11EACPalettes; ++paletteIdx) {
const int *palette = kR11EACModifierPalettes[paletteIdx];
// Iterate through each pixel to find the best palette index
// and update the indices with the choice. Also store the error
// for this palette to be compared against the best error...
uint32_t error = 0;
uint64_t indices = 0;
for (int pixelIdx = 0; pixelIdx < 16; ++pixelIdx) {
const uint16_t pixel = cblock[pixelIdx];
// Iterate through each palette value to find the best index
// for this particular pixel for this particular palette.
uint16_t bestPixelError =
abs_diff(pixel, compute_r11eac_pixel(center, palette[0], multiplier));
int bestIndex = 0;
for (int i = 1; i < kR11EACPaletteSize; ++i) {
const uint16_t p = compute_r11eac_pixel(center, palette[i], multiplier);
const uint16_t perror = abs_diff(pixel, p);
// Is this index better?
if (perror < bestPixelError) {
bestIndex = i;
bestPixelError = perror;
}
}
SkASSERT(bestIndex < 8);
error += bestPixelError;
indices <<= 3;
indices |= bestIndex;
}
SkASSERT(indices < (static_cast<uint64_t>(1) << 48));
// Is this palette better?
if (error < bestError) {
bestPalette = paletteIdx;
bestIndices = indices;
bestError = error;
}
}
// Finally, pack everything together...
return pack_r11eac_block(center, bestPalette, multiplier, bestIndices);
}
#endif // COMPRESS_R11_EAC_SLOW
#if COMPRESS_R11_EAC_FAST
// This function takes into account that most blocks that we compress have a gradation from
// fully opaque to fully transparent. The compression scheme works by selecting the
// palette and multiplier that has the tightest fit to the 0-255 range. This is encoded
// as the block header (0x8490). The indices are then selected by considering the top
// three bits of each alpha value. For alpha masks, this reduces the dynamic range from
// 17 to 8, but the quality is still acceptable.
//
// There are a few caveats that need to be taken care of...
//
// 1. The block is read in as scanlines, so the indices are stored as:
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// However, the decomrpession routine reads them in column-major order, so they
// need to be packed as:
// 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
// So when reading, they must be transposed.
//
// 2. We cannot use the top three bits as an index directly, since the R11 EAC palettes
// above store the modulation values first decreasing and then increasing:
// e.g. {-3, -6, -9, -15, 2, 5, 8, 14}
// Hence, we need to convert the indices with the following mapping:
// From: 0 1 2 3 4 5 6 7
// To: 3 2 1 0 4 5 6 7
static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) {
uint64_t retVal = static_cast<uint64_t>(0x8490) << 48;
for(int i = 0; i < 4; ++i) {
for(int j = 0; j < 4; ++j) {
const int shift = 45-3*(j*4+i);
SkASSERT(shift <= 45);
const uint64_t idx = block[i*4+j] >> 5;
SkASSERT(idx < 8);
// !SPEED! This is slightly faster than having an if-statement.
switch(idx) {
case 0:
case 1:
case 2:
case 3:
retVal |= (3-idx) << shift;
break;
default:
retVal |= idx << shift;
break;
}
}
}
return SkEndian_SwapBE64(retVal);
}
#endif // COMPRESS_R11_EAC_FAST
#if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
static uint64_t compress_r11eac_block(const uint8_t block[16]) {
// Are all blocks a solid color?
bool solid = true;
for (int i = 1; i < 16; ++i) {
if (block[i] != block[0]) {
solid = false;
break;
}
}
if (solid) {
switch(block[0]) {
// Fully transparent? We know the encoding...
case 0:
// (0x0020 << 48) produces the following:
// basw_cw: 0
// mod: 0, palette: {-3, -6, -9, -15, 2, 5, 8, 14}
// multiplier: 2
// mod_val: -3
//
// this gives the following formula:
// clamp[0, 2047](0*8+4+(-3)*2*8) = 0
//
// Furthermore, it is impervious to endianness:
// 0x0020000000002000ULL
// Will produce one pixel with index 2, which gives:
// clamp[0, 2047](0*8+4+(-9)*2*8) = 0
return 0x0020000000002000ULL;
// Fully opaque? We know this encoding too...
case 255:
// -1 produces the following:
// basw_cw: 255
// mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8}
// mod_val: 8
//
// this gives the following formula:
// clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047
return 0xFFFFFFFFFFFFFFFFULL;
default:
// !TODO! krajcevski:
// This will probably never happen, since we're using this format
// primarily for compressing alpha maps. Usually the only
// non-fullly opaque or fully transparent blocks are not a solid
// intermediate color. If we notice that they are, then we can
// add another optimization...
break;
}
}
return compress_heterogeneous_r11eac_block(block);
}
// This function is used by R11 EAC to compress 4x4 blocks
// of 8-bit alpha into 64-bit values that comprise the compressed data.
// We need to make sure that the dimensions of the src pixels are divisible
// by 4, and copy 4x4 blocks one at a time for compression.
typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]);
static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src,
int width, int height, int rowBytes,
A84x4To64BitProc proc) {
// Make sure that our data is well-formed enough to be considered for compression
if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) {
return false;
}
int blocksX = width >> 2;
int blocksY = height >> 2;
uint8_t block[16];
uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
for (int y = 0; y < blocksY; ++y) {
for (int x = 0; x < blocksX; ++x) {
// Load block
for (int k = 0; k < 4; ++k) {
memcpy(block + k*4, src + k*rowBytes + 4*x, 4);
}
// Compress it
*encPtr = proc(block);
++encPtr;
}
src += 4 * rowBytes;
}
return true;
}
#endif // (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
// This function converts an integer containing four bytes of alpha
// values into an integer containing four bytes of indices into R11 EAC.
// Note, there needs to be a mapping of indices:
// 0 1 2 3 4 5 6 7
// 3 2 1 0 4 5 6 7
//
// To compute this, we first negate each byte, and then add three, which
// gives the mapping
// 3 2 1 0 -1 -2 -3 -4
//
// Then we mask out the negative values, take their absolute value, and
// add three.
//
// Most of the voodoo in this function comes from Hacker's Delight, section 2-18
static inline uint32_t convert_indices(uint32_t x) {
// Take the top three bits...
x = (x & 0xE0E0E0E0) >> 5;
// Negate...
x = ~((0x80808080 - x) ^ 0x7F7F7F7F);
// Add three
const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303;
x = ((x ^ 0x03030303) & 0x80808080) ^ s;
// Absolute value
const uint32_t a = x & 0x80808080;
const uint32_t b = a >> 7;
// Aside: mask negatives (m is three if the byte was negative)
const uint32_t m = (a >> 6) | b;
// .. continue absolute value
x = (x ^ ((a - b) | a)) + b;
// Add three
return x + m;
}
#if COMPRESS_R11_EAC_FASTEST
template<unsigned shift>
static inline uint64_t swap_shift(uint64_t x, uint64_t mask) {
const uint64_t t = (x ^ (x >> shift)) & mask;
return x ^ t ^ (t << shift);
}
static inline uint64_t interleave6(uint64_t topRows, uint64_t bottomRows) {
// If our 3-bit block indices are laid out as:
// a b c d
// e f g h
// i j k l
// m n o p
//
// This function expects topRows and bottomRows to contain the first two rows
// of indices interleaved in the least significant bits of a and b. In other words...
//
// If the architecture is big endian, then topRows and bottomRows will contain the following:
// Bits 31-0:
// a: 00 a e 00 b f 00 c g 00 d h
// b: 00 i m 00 j n 00 k o 00 l p
//
// If the architecture is little endian, then topRows and bottomRows will contain
// the following:
// Bits 31-0:
// a: 00 d h 00 c g 00 b f 00 a e
// b: 00 l p 00 k o 00 j n 00 i m
//
// This function returns a 48-bit packing of the form:
// a e i m b f j n c g k o d h l p
//
// !SPEED! this function might be even faster if certain SIMD intrinsics are
// used..
// For both architectures, we can figure out a packing of the bits by
// using a shuffle and a few shift-rotates...
uint64_t x = (static_cast<uint64_t>(topRows) << 32) | static_cast<uint64_t>(bottomRows);
// x: 00 a e 00 b f 00 c g 00 d h 00 i m 00 j n 00 k o 00 l p
x = swap_shift<10>(x, 0x3FC0003FC00000ULL);
// x: b f 00 00 00 a e c g i m 00 00 00 d h j n 00 k o 00 l p
x = (x | ((x << 52) & (0x3FULL << 52)) | ((x << 20) & (0x3FULL << 28))) >> 16;
// x: 00 00 00 00 00 00 00 00 b f l p a e c g i m k o d h j n
x = swap_shift<6>(x, 0xFC0000ULL);
#if defined (SK_CPU_BENDIAN)
// x: 00 00 00 00 00 00 00 00 b f l p a e i m c g k o d h j n
x = swap_shift<36>(x, 0x3FULL);
// x: 00 00 00 00 00 00 00 00 b f j n a e i m c g k o d h l p
x = swap_shift<12>(x, 0xFFF000000ULL);
#else
// If our CPU is little endian, then the above logic will
// produce the following indices:
// x: 00 00 00 00 00 00 00 00 c g i m d h l p b f j n a e k o
x = swap_shift<36>(x, 0xFC0ULL);
// x: 00 00 00 00 00 00 00 00 a e i m d h l p b f j n c g k o
x = (x & (0xFFFULL << 36)) | ((x & 0xFFFFFFULL) << 12) | ((x >> 24) & 0xFFFULL);
#endif
// x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p
return x;
}
// This function follows the same basic procedure as compress_heterogeneous_r11eac_block
// above when COMPRESS_R11_EAC_FAST is defined, but it avoids a few loads/stores and
// tries to optimize where it can using SIMD.
static uint64_t compress_r11eac_block_fast(const uint8_t* src, int rowBytes) {
// Store each row of alpha values in an integer
const uint32_t alphaRow1 = *(reinterpret_cast<const uint32_t*>(src));
const uint32_t alphaRow2 = *(reinterpret_cast<const uint32_t*>(src + rowBytes));
const uint32_t alphaRow3 = *(reinterpret_cast<const uint32_t*>(src + 2*rowBytes));
const uint32_t alphaRow4 = *(reinterpret_cast<const uint32_t*>(src + 3*rowBytes));
// Check for solid blocks. The explanations for these values
// can be found in the comments of compress_r11eac_block above
if (alphaRow1 == alphaRow2 && alphaRow1 == alphaRow3 && alphaRow1 == alphaRow4) {
if (0 == alphaRow1) {
// Fully transparent block
return 0x0020000000002000ULL;
} else if (0xFFFFFFFF == alphaRow1) {
// Fully opaque block
return 0xFFFFFFFFFFFFFFFFULL;
}
}
// Convert each integer of alpha values into an integer of indices
const uint32_t indexRow1 = convert_indices(alphaRow1);
const uint32_t indexRow2 = convert_indices(alphaRow2);
const uint32_t indexRow3 = convert_indices(alphaRow3);
const uint32_t indexRow4 = convert_indices(alphaRow4);
// Interleave the indices from the top two rows and bottom two rows
// prior to passing them to interleave6. Since each index is at most
// three bits, then each byte can hold two indices... The way that the
// compression scheme expects the packing allows us to efficiently pack
// the top two rows and bottom two rows. Interleaving each 6-bit sequence
// and tightly packing it into a uint64_t is a little trickier, which is
// taken care of in interleave6.
const uint32_t r1r2 = (indexRow1 << 3) | indexRow2;
const uint32_t r3r4 = (indexRow3 << 3) | indexRow4;
const uint64_t indices = interleave6(r1r2, r3r4);
// Return the packed incdices in the least significant bits with the magic header
return SkEndian_SwapBE64(0x8490000000000000ULL | indices);
}
static bool compress_a8_to_r11eac_fast(uint8_t* dst, const uint8_t* src,
int width, int height, int rowBytes) {
// Make sure that our data is well-formed enough to be considered for compression
if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) {
return false;
}
const int blocksX = width >> 2;
const int blocksY = height >> 2;
uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
for (int y = 0; y < blocksY; ++y) {
for (int x = 0; x < blocksX; ++x) {
// Compress it
*encPtr = compress_r11eac_block_fast(src + 4*x, rowBytes);
++encPtr;
}
src += 4 * rowBytes;
}
return true;
}
#endif // COMPRESS_R11_EAC_FASTEST
////////////////////////////////////////////////////////////////////////////////
//
// Utility functions used by the blitter
//
////////////////////////////////////////////////////////////////////////////////
// The R11 EAC format expects that indices are given in column-major order. Since
// we receive alpha values in raster order, this usually means that we have to use
// pack6 above to properly pack our indices. However, if our indices come from the
// blitter, then each integer will be a column of indices, and hence can be efficiently
// packed. This function takes the bottom three bits of each byte and places them in
// the least significant 12 bits of the resulting integer.
static inline uint32_t pack_indices_vertical(uint32_t x) {
#if defined (SK_CPU_BENDIAN)
return
(x & 7) |
((x >> 5) & (7 << 3)) |
((x >> 10) & (7 << 6)) |
((x >> 15) & (7 << 9));
#else
return
((x >> 24) & 7) |
((x >> 13) & (7 << 3)) |
((x >> 2) & (7 << 6)) |
((x << 9) & (7 << 9));
#endif
}
// This function returns the compressed format of a block given as four columns of
// alpha values. Each column is assumed to be loaded from top to bottom, and hence
// must first be converted to indices and then packed into the resulting 64-bit
// integer.
inline void compress_block_vertical(uint8_t* dstPtr, const uint8_t *block) {
const uint32_t* src = reinterpret_cast<const uint32_t*>(block);
uint64_t* dst = reinterpret_cast<uint64_t*>(dstPtr);
const uint32_t alphaColumn0 = src[0];
const uint32_t alphaColumn1 = src[1];
const uint32_t alphaColumn2 = src[2];
const uint32_t alphaColumn3 = src[3];
if (alphaColumn0 == alphaColumn1 &&
alphaColumn2 == alphaColumn3 &&
alphaColumn0 == alphaColumn2) {
if (0 == alphaColumn0) {
// Transparent
*dst = 0x0020000000002000ULL;
return;
}
else if (0xFFFFFFFF == alphaColumn0) {
// Opaque
*dst = 0xFFFFFFFFFFFFFFFFULL;
return;
}
}
const uint32_t indexColumn0 = convert_indices(alphaColumn0);
const uint32_t indexColumn1 = convert_indices(alphaColumn1);
const uint32_t indexColumn2 = convert_indices(alphaColumn2);
const uint32_t indexColumn3 = convert_indices(alphaColumn3);
const uint32_t packedIndexColumn0 = pack_indices_vertical(indexColumn0);
const uint32_t packedIndexColumn1 = pack_indices_vertical(indexColumn1);
const uint32_t packedIndexColumn2 = pack_indices_vertical(indexColumn2);
const uint32_t packedIndexColumn3 = pack_indices_vertical(indexColumn3);
*dst = SkEndian_SwapBE64(0x8490000000000000ULL |
(static_cast<uint64_t>(packedIndexColumn0) << 36) |
(static_cast<uint64_t>(packedIndexColumn1) << 24) |
static_cast<uint64_t>(packedIndexColumn2 << 12) |
static_cast<uint64_t>(packedIndexColumn3));
}
static inline int get_r11_eac_index(uint64_t block, int x, int y) {
SkASSERT(x >= 0 && x < 4);
SkASSERT(y >= 0 && y < 4);
const int idx = x*4 + y;
return (block >> ((15-idx)*3)) & 0x7;
}
static void decompress_r11_eac_block(uint8_t* dst, int dstRowBytes, const uint8_t* src) {
const uint64_t block = SkEndian_SwapBE64(*(reinterpret_cast<const uint64_t *>(src)));
const int base_cw = (block >> 56) & 0xFF;
const int mod = (block >> 52) & 0xF;
const int palette_idx = (block >> 48) & 0xF;
const int* palette = kR11EACModifierPalettes[palette_idx];
for (int j = 0; j < 4; ++j) {
for (int i = 0; i < 4; ++i) {
const int idx = get_r11_eac_index(block, i, j);
const int val = base_cw*8 + 4 + palette[idx]*mod*8;
if (val < 0) {
dst[i] = 0;
} else if (val > 2047) {
dst[i] = 0xFF;
} else {
dst[i] = (val >> 3) & 0xFF;
}
}
dst += dstRowBytes;
}
}
// This is the type passed as the CompressorType argument of the compressed
// blitter for the R11 EAC format. The static functions required to be in this
// struct are documented in SkTextureCompressor_Blitter.h
struct CompressorR11EAC {
static inline void CompressA8Vertical(uint8_t* dst, const uint8_t* src) {
compress_block_vertical(dst, src);
}
static inline void CompressA8Horizontal(uint8_t* dst, const uint8_t* src,
int srcRowBytes) {
*(reinterpret_cast<uint64_t*>(dst)) = compress_r11eac_block_fast(src, srcRowBytes);
}
static inline void UpdateBlock(uint8_t* dst, const uint8_t* src) {
}
};
////////////////////////////////////////////////////////////////////////////////
namespace SkTextureCompressor {
bool CompressA8ToR11EAC(uint8_t* dst, const uint8_t* src, int width, int height, int rowBytes) {
#if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_r11eac_block);
#elif COMPRESS_R11_EAC_FASTEST
return compress_a8_to_r11eac_fast(dst, src, width, height, rowBytes);
#else
#error "Must choose R11 EAC algorithm"
#endif
}
SkBlitter* CreateR11EACBlitter(int width, int height, void* outputBuffer,
SkTBlitterAllocator* allocator) {
if ((width % 4) != 0 || (height % 4) != 0) {
return NULL;
}
// Memset the output buffer to an encoding that decodes to zero. We must do this
// in order to avoid having uninitialized values in the buffer if the blitter
// decides not to write certain scanlines (and skip entire rows of blocks).
// In the case of R11, we use the encoding from recognizing all zero pixels from above.
const int nBlocks = (width * height / 16); // 4x4 pixel blocks.
uint64_t *dst = reinterpret_cast<uint64_t *>(outputBuffer);
for (int i = 0; i < nBlocks; ++i) {
*dst = 0x0020000000002000ULL;
++dst;
}
return allocator->createT<
SkTCompressedAlphaBlitter<4, 8, CompressorR11EAC>, int, int, void*>
(width, height, outputBuffer);
}
void DecompressR11EAC(uint8_t* dst, int dstRowBytes, const uint8_t* src, int width, int height) {
for (int j = 0; j < height; j += 4) {
for (int i = 0; i < width; i += 4) {
decompress_r11_eac_block(dst + i, dstRowBytes, src);
src += 8;
}
dst += 4 * dstRowBytes;
}
}
} // namespace SkTextureCompressor
|