aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/utils/SkTextureCompressor_Blitter.h
blob: 93d158dad8d646e17015a9040a8f9789b83fb45e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/*
 * Copyright 2014 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkTextureCompressor_Blitter_DEFINED
#define SkTextureCompressor_Blitter_DEFINED

#include "SkTypes.h"
#include "SkBlitter.h"

namespace SkTextureCompressor {

// The function used to compress an A8 block. This function is expected to be
// used as a template argument to SkCompressedAlphaBlitter. The layout of the
// block is also expected to be in column-major order.
typedef void (*CompressA8Proc)(uint8_t* dst, const uint8_t block[]);

// This class implements a blitter that blits directly into a buffer that will
// be used as an compressed alpha texture. We compute this buffer by
// buffering scan lines and then outputting them all at once. The number of
// scan lines buffered is controlled by kBlockSize
template<int BlockDim, int EncodedBlockSize, CompressA8Proc CompressionProc>
class SkTCompressedAlphaBlitter : public SkBlitter {
public:
    SkTCompressedAlphaBlitter(int width, int height, void *compressedBuffer)
        // 0x7FFE is one minus the largest positive 16-bit int. We use it for
        // debugging to make sure that we're properly setting the nextX distance
        // in flushRuns(). 
        : kLongestRun(0x7FFE), kZeroAlpha(0)
        , fNextRun(0)
        , fWidth(width)
        , fHeight(height)
        , fBuffer(compressedBuffer)
        {
            SkASSERT((width % BlockDim) == 0);
            SkASSERT((height % BlockDim) == 0);
        }

    virtual ~SkTCompressedAlphaBlitter() { this->flushRuns(); }

    // Blit a horizontal run of one or more pixels.
    virtual void blitH(int x, int y, int width) SK_OVERRIDE {
        // This function is intended to be called from any standard RGB
        // buffer, so we should never encounter it. However, if some code
        // path does end up here, then this needs to be investigated.
        SkFAIL("Not implemented!");
    }
    
    // Blit a horizontal run of antialiased pixels; runs[] is a *sparse*
    // zero-terminated run-length encoding of spans of constant alpha values.
    virtual void blitAntiH(int x, int y,
                           const SkAlpha antialias[],
                           const int16_t runs[]) SK_OVERRIDE {
        // Make sure that the new row to blit is either the first
        // row that we're blitting, or it's exactly the next scan row
        // since the last row that we blit. This is to ensure that when
        // we go to flush the runs, that they are all the same four
        // runs.
        if (fNextRun > 0 &&
            ((x != fBufferedRuns[fNextRun-1].fX) ||
             (y-1 != fBufferedRuns[fNextRun-1].fY))) {
            this->flushRuns();
        }

        // Align the rows to a block boundary. If we receive rows that
        // are not on a block boundary, then fill in the preceding runs
        // with zeros. We do this by producing a single RLE that says
        // that we have 0x7FFE pixels of zero (0x7FFE = 32766).
        const int row = BlockDim * (y / BlockDim);
        while ((row + fNextRun) < y) {
            fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha;
            fBufferedRuns[fNextRun].fRuns = &kLongestRun;
            fBufferedRuns[fNextRun].fX = 0;
            fBufferedRuns[fNextRun].fY = row + fNextRun;
            ++fNextRun;
        }

        // Make sure that our assumptions aren't violated...
        SkASSERT(fNextRun == (y % BlockDim));
        SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y);

        // Set the values of the next run
        fBufferedRuns[fNextRun].fAlphas = antialias;
        fBufferedRuns[fNextRun].fRuns = runs;
        fBufferedRuns[fNextRun].fX = x;
        fBufferedRuns[fNextRun].fY = y;

        // If we've output a block of scanlines in a row that don't violate our
        // assumptions, then it's time to flush them...
        if (BlockDim == ++fNextRun) {
            this->flushRuns();
        }
    }
    
    // Blit a vertical run of pixels with a constant alpha value.
    virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE {
        // This function is currently not implemented. It is not explicitly
        // required by the contract, but if at some time a code path runs into
        // this function (which is entirely possible), it needs to be implemented.
        //
        // TODO (krajcevski):
        // This function will be most easily implemented in one of two ways:
        // 1. Buffer each vertical column value and then construct a list
        //    of alpha values and output all of the blocks at once. This only
        //    requires a write to the compressed buffer
        // 2. Replace the indices of each block with the proper indices based
        //    on the alpha value. This requires a read and write of the compressed
        //    buffer, but much less overhead.
        SkFAIL("Not implemented!");
    }

    // Blit a solid rectangle one or more pixels wide.
    virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE {
        // Analogous to blitRow, this function is intended for RGB targets
        // and should never be called by this blitter. Any calls to this function
        // are probably a bug and should be investigated.
        SkFAIL("Not implemented!");
    }

    // Blit a rectangle with one alpha-blended column on the left,
    // width (zero or more) opaque pixels, and one alpha-blended column
    // on the right. The result will always be at least two pixels wide.
    virtual void blitAntiRect(int x, int y, int width, int height,
                              SkAlpha leftAlpha, SkAlpha rightAlpha) SK_OVERRIDE {
        // This function is currently not implemented. It is not explicitly
        // required by the contract, but if at some time a code path runs into
        // this function (which is entirely possible), it needs to be implemented.
        //
        // TODO (krajcevski):
        // This function will be most easily implemented as follows:
        // 1. If width/height are smaller than a block, then update the
        //    indices of the affected blocks.
        // 2. If width/height are larger than a block, then construct a 9-patch
        //    of block encodings that represent the rectangle, and write them
        //    to the compressed buffer as necessary. Whether or not the blocks
        //    are overwritten by zeros or just their indices are updated is up
        //    to debate.
        SkFAIL("Not implemented!");
    }

    // Blit a pattern of pixels defined by a rectangle-clipped mask;
    // typically used for text.
    virtual void blitMask(const SkMask&, const SkIRect& clip) SK_OVERRIDE {
        // This function is currently not implemented. It is not explicitly
        // required by the contract, but if at some time a code path runs into
        // this function (which is entirely possible), it needs to be implemented.
        //
        // TODO (krajcevski):
        // This function will be most easily implemented in the same way as
        // blitAntiRect above.
        SkFAIL("Not implemented!");
    }

    // If the blitter just sets a single value for each pixel, return the
    // bitmap it draws into, and assign value. If not, return NULL and ignore
    // the value parameter.
    virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) SK_OVERRIDE {
        return NULL;
    }

    /**
     * Compressed texture blitters only really work correctly if they get
     * BlockDim rows at a time. That being said, this blitter tries it's best
     * to preserve semantics if blitAntiH doesn't get called in too many
     * weird ways...
     */
    virtual int requestRowsPreserved() const { return BlockDim; }

private:
    static const int kPixelsPerBlock = BlockDim * BlockDim;

    // The longest possible run of pixels that this blitter will receive.
    // This is initialized in the constructor to 0x7FFE, which is one less
    // than the largest positive 16-bit integer. We make sure that it's one
    // less for debugging purposes. We also don't make this variable static
    // in order to make sure that we can construct a valid pointer to it.
    const int16_t kLongestRun;

    // Usually used in conjunction with kLongestRun. This is initialized to
    // zero.
    const SkAlpha kZeroAlpha;

    // This is the information that we buffer whenever we're asked to blit
    // a row with this blitter.
    struct BufferedRun {
        const SkAlpha* fAlphas;
        const int16_t* fRuns;
        int fX, fY;
    } fBufferedRuns[BlockDim];

    // The next row [0, BlockDim) that we need to blit.
    int fNextRun;

    // The width and height of the image that we're blitting
    const int fWidth;
    const int fHeight;

    // The compressed buffer that we're blitting into. It is assumed that the buffer
    // is large enough to store a compressed image of size fWidth*fHeight.
    void* const fBuffer;

    // Various utility functions
    int blocksWide() const { return fWidth / BlockDim; }
    int blocksTall() const { return fHeight / BlockDim; }
    int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; }

    // Returns the block index for the block containing pixel (x, y). Block
    // indices start at zero and proceed in raster order.
    int getBlockOffset(int x, int y) const {
        SkASSERT(x < fWidth);
        SkASSERT(y < fHeight);
        const int blockCol = x / BlockDim;
        const int blockRow = y / BlockDim;
        return blockRow * this->blocksWide() + blockCol;
    }

    // Returns a pointer to the block containing pixel (x, y)
    uint8_t *getBlock(int x, int y) const {
        uint8_t* ptr = reinterpret_cast<uint8_t*>(fBuffer);
        return ptr + EncodedBlockSize*this->getBlockOffset(x, y);
    }

    // Updates the block whose columns are stored in block. curAlphai is expected
    // to store the alpha values that will be placed within each of the columns in
    // the range [col, col+colsLeft).
    typedef uint32_t Column[BlockDim/4];
    typedef uint32_t Block[BlockDim][BlockDim/4];
    inline void updateBlockColumns(Block block, const int col,
                                   const int colsLeft, const Column curAlphai) {
        SkASSERT(NULL != block);
        SkASSERT(col + colsLeft <= BlockDim);

        for (int i = col; i < (col + colsLeft); ++i) {
            memcpy(block[i], curAlphai, sizeof(Column));
        }
    }

    // The following function writes the buffered runs to compressed blocks.
    // If fNextRun < BlockDim, then we fill the runs that we haven't buffered with
    // the constant zero buffer.
    void flushRuns() {
        // If we don't have any runs, then just return.
        if (0 == fNextRun) {
            return;
        }

#ifndef NDEBUG
        // Make sure that if we have any runs, they all match
        for (int i = 1; i < fNextRun; ++i) {
            SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1);
            SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX);
        }
#endif

        // If we don't have as many runs as we have rows, fill in the remaining
        // runs with constant zeros.
        for (int i = fNextRun; i < BlockDim; ++i) {
            fBufferedRuns[i].fY = fBufferedRuns[0].fY + i;
            fBufferedRuns[i].fX = fBufferedRuns[0].fX;
            fBufferedRuns[i].fAlphas = &kZeroAlpha;
            fBufferedRuns[i].fRuns = &kLongestRun;
        }

        // Make sure that our assumptions aren't violated.
        SkASSERT(fNextRun > 0 && fNextRun <= BlockDim);
        SkASSERT((fBufferedRuns[0].fY % BlockDim) == 0);

        // The following logic walks BlockDim rows at a time and outputs compressed
        // blocks to the buffer passed into the constructor.
        // We do the following:
        //
        //      c1 c2 c3 c4
        // -----------------------------------------------------------------------
        // ... |  |  |  |  |  ----> fBufferedRuns[0]
        // -----------------------------------------------------------------------
        // ... |  |  |  |  |  ----> fBufferedRuns[1]
        // -----------------------------------------------------------------------
        // ... |  |  |  |  |  ----> fBufferedRuns[2]
        // -----------------------------------------------------------------------
        // ... |  |  |  |  |  ----> fBufferedRuns[3]
        // -----------------------------------------------------------------------
        // 
        // curX -- the macro X value that we've gotten to.
        // c[BlockDim] -- the buffers that represent the columns of the current block
        //                  that we're operating on
        // curAlphaColumn -- buffer containing the column of alpha values from fBufferedRuns.
        // nextX -- for each run, the next point at which we need to update curAlphaColumn
        //          after the value of curX.
        // finalX -- the minimum of all the nextX values.
        //
        // curX advances to finalX outputting any blocks that it passes along
        // the way. Since finalX will not change when we reach the end of a
        // run, the termination criteria will be whenever curX == finalX at the
        // end of a loop.

        // Setup:
        Block block;
        sk_bzero(block, sizeof(block));

        Column curAlphaColumn;
        sk_bzero(curAlphaColumn, sizeof(curAlphaColumn));

        SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn);

        int nextX[BlockDim];
        for (int i = 0; i < BlockDim; ++i) {
            nextX[i] = 0x7FFFFF;
        }

        uint8_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY);

        // Populate the first set of runs and figure out how far we need to
        // advance on the first step
        int curX = 0;
        int finalX = 0xFFFFF;
        for (int i = 0; i < BlockDim; ++i) {
            nextX[i] = *(fBufferedRuns[i].fRuns);
            curAlpha[i] = *(fBufferedRuns[i].fAlphas);

            finalX = SkMin32(nextX[i], finalX);
        }

        // Make sure that we have a valid right-bound X value
        SkASSERT(finalX < 0xFFFFF);

        // Run the blitter...
        while (curX != finalX) {
            SkASSERT(finalX >= curX);

            // Do we need to populate the rest of the block?
            if ((finalX - (BlockDim*(curX / BlockDim))) >= BlockDim) {
                const int col = curX % BlockDim;
                const int colsLeft = BlockDim - col;
                SkASSERT(curX + colsLeft <= finalX);

                this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);

                // Write this block
                CompressionProc(outPtr, reinterpret_cast<uint8_t*>(block));
                outPtr += EncodedBlockSize;
                curX += colsLeft;
            }

            // If we can advance even further, then just keep memsetting the block
            if ((finalX - curX) >= BlockDim) {
                SkASSERT((curX % BlockDim) == 0);

                const int col = 0;
                const int colsLeft = BlockDim;

                this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);

                // While we can keep advancing, just keep writing the block.
                uint8_t lastBlock[EncodedBlockSize];
                CompressionProc(lastBlock, reinterpret_cast<uint8_t*>(block));
                while((finalX - curX) >= BlockDim) {
                    memcpy(outPtr, lastBlock, EncodedBlockSize);
                    outPtr += EncodedBlockSize;
                    curX += BlockDim;
                }
            }

            // If we haven't advanced within the block then do so.
            if (curX < finalX) {
                const int col = curX % BlockDim;
                const int colsLeft = finalX - curX;

                this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
                curX += colsLeft;
            }

            SkASSERT(curX == finalX);

            // Figure out what the next advancement is...
            for (int i = 0; i < BlockDim; ++i) {
                if (nextX[i] == finalX) {
                    const int16_t run = *(fBufferedRuns[i].fRuns);
                    fBufferedRuns[i].fRuns += run;
                    fBufferedRuns[i].fAlphas += run;
                    curAlpha[i] = *(fBufferedRuns[i].fAlphas);
                    nextX[i] += *(fBufferedRuns[i].fRuns);
                }
            }

            finalX = 0xFFFFF;
            for (int i = 0; i < BlockDim; ++i) {
                finalX = SkMin32(nextX[i], finalX);
            }
        }

        // If we didn't land on a block boundary, output the block...
        if ((curX % BlockDim) > 1) {
            CompressionProc(outPtr, reinterpret_cast<uint8_t*>(block));
        }

        fNextRun = 0;
    }
};

}  // namespace SkTextureCompressor

#endif  // SkTextureCompressor_Blitter_DEFINED