1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
|
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkTextureCompressor_Blitter_DEFINED
#define SkTextureCompressor_Blitter_DEFINED
#include "SkTypes.h"
#include "SkBlitter.h"
namespace SkTextureCompressor {
// Ostensibly, SkBlitter::BlitRect is supposed to set a rect of pixels to full
// alpha. This becomes problematic when using compressed texture blitters, since
// the rect rarely falls along block boundaries. The proper way to handle this is
// to update the compressed encoding of a block by resetting the proper parameters
// (and even recompressing the block) where a rect falls inbetween block boundaries.
// PEDANTIC_BLIT_RECT attempts to do this by requiring the struct passed to
// SkTCompressedAlphaBlitter to implement an UpdateBlock function call.
//
// However, the way that BlitRect gets used almost exclusively is to bracket inverse
// fills for paths. In other words, the top few rows and bottom few rows of a path
// that's getting inverse filled are called using blitRect. The rest are called using
// the standard blitAntiH. As a result, we can just call blitAntiH with a faux RLE
// of full alpha values, and then check in our flush() call that we don't run off the
// edge of the buffer. This is why we do not need this flag to be turned on.
//
// NOTE: This code is unfinished, but is inteded as a starting point if an when
// bugs are introduced from the existing code.
#define PEDANTIC_BLIT_RECT 0
// This class implements a blitter that blits directly into a buffer that will
// be used as an compressed alpha texture. We compute this buffer by
// buffering scan lines and then outputting them all at once. The number of
// scan lines buffered is controlled by kBlockSize
//
// The CompressorType is a struct with a bunch of static methods that provides
// the specialized compression functionality of the blitter. A complete CompressorType
// will implement the following static functions;
//
// struct CompressorType {
// // The function used to compress an A8 block. The layout of the
// // block is also expected to be in column-major order.
// static void CompressA8Vertical(uint8_t* dst, const uint8_t block[]);
//
// // The function used to compress an A8 block. The layout of the
// // block is also expected to be in row-major order.
// static void CompressA8Horizontal(uint8_t* dst, const uint8_t* src, int srcRowBytes);
//
#if PEDANTIC_BLIT_RECT
// // The function used to update an already compressed block. This will
// // most likely be implementation dependent. The mask variable will have
// // 0xFF in positions where the block should be updated and 0 in positions
// // where it shouldn't. src contains an uncompressed buffer of pixels.
// static void UpdateBlock(uint8_t* dst, const uint8_t* src, int srcRowBytes,
// const uint8_t* mask);
#endif
// };
template<int BlockDim, int EncodedBlockSize, typename CompressorType>
class SkTCompressedAlphaBlitter : public SkBlitter {
public:
SkTCompressedAlphaBlitter(int width, int height, void *compressedBuffer)
// 0x7FFE is one minus the largest positive 16-bit int. We use it for
// debugging to make sure that we're properly setting the nextX distance
// in flushRuns().
#ifdef SK_DEBUG
: fCalledOnceWithNonzeroY(false)
, fBlitMaskCalled(false),
#else
:
#endif
kLongestRun(0x7FFE), kZeroAlpha(0)
, fNextRun(0)
, fWidth(width)
, fHeight(height)
, fBuffer(compressedBuffer)
{
SkASSERT((width % BlockDim) == 0);
SkASSERT((height % BlockDim) == 0);
}
virtual ~SkTCompressedAlphaBlitter() { this->flushRuns(); }
// Blit a horizontal run of one or more pixels.
virtual void blitH(int x, int y, int width) SK_OVERRIDE {
// This function is intended to be called from any standard RGB
// buffer, so we should never encounter it. However, if some code
// path does end up here, then this needs to be investigated.
SkFAIL("Not implemented!");
}
// Blit a horizontal run of antialiased pixels; runs[] is a *sparse*
// zero-terminated run-length encoding of spans of constant alpha values.
virtual void blitAntiH(int x, int y,
const SkAlpha antialias[],
const int16_t runs[]) SK_OVERRIDE {
SkASSERT(0 == x);
// Make sure that the new row to blit is either the first
// row that we're blitting, or it's exactly the next scan row
// since the last row that we blit. This is to ensure that when
// we go to flush the runs, that they are all the same four
// runs.
if (fNextRun > 0 &&
((x != fBufferedRuns[fNextRun-1].fX) ||
(y-1 != fBufferedRuns[fNextRun-1].fY))) {
this->flushRuns();
}
// Align the rows to a block boundary. If we receive rows that
// are not on a block boundary, then fill in the preceding runs
// with zeros. We do this by producing a single RLE that says
// that we have 0x7FFE pixels of zero (0x7FFE = 32766).
const int row = BlockDim * (y / BlockDim);
while ((row + fNextRun) < y) {
fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha;
fBufferedRuns[fNextRun].fRuns = &kLongestRun;
fBufferedRuns[fNextRun].fX = 0;
fBufferedRuns[fNextRun].fY = row + fNextRun;
++fNextRun;
}
// Make sure that our assumptions aren't violated...
SkASSERT(fNextRun == (y % BlockDim));
SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y);
// Set the values of the next run
fBufferedRuns[fNextRun].fAlphas = antialias;
fBufferedRuns[fNextRun].fRuns = runs;
fBufferedRuns[fNextRun].fX = x;
fBufferedRuns[fNextRun].fY = y;
// If we've output a block of scanlines in a row that don't violate our
// assumptions, then it's time to flush them...
if (BlockDim == ++fNextRun) {
this->flushRuns();
}
}
// Blit a vertical run of pixels with a constant alpha value.
virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE {
// This function is currently not implemented. It is not explicitly
// required by the contract, but if at some time a code path runs into
// this function (which is entirely possible), it needs to be implemented.
//
// TODO (krajcevski):
// This function will be most easily implemented in one of two ways:
// 1. Buffer each vertical column value and then construct a list
// of alpha values and output all of the blocks at once. This only
// requires a write to the compressed buffer
// 2. Replace the indices of each block with the proper indices based
// on the alpha value. This requires a read and write of the compressed
// buffer, but much less overhead.
SkFAIL("Not implemented!");
}
// Blit a solid rectangle one or more pixels wide. It's assumed that blitRect
// is called as a way to bracket blitAntiH where above and below the path the
// called path just needs a solid rectangle to fill in the mask.
#ifdef SK_DEBUG
bool fCalledOnceWithNonzeroY;
#endif
virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE {
// Assumptions:
SkASSERT(0 == x);
SkASSERT(width <= fWidth);
// Make sure that we're only ever bracketing calls to blitAntiH.
SkASSERT((0 == y) || (!fCalledOnceWithNonzeroY && (fCalledOnceWithNonzeroY = true)));
#if !(PEDANTIC_BLIT_RECT)
for (int i = 0; i < height; ++i) {
const SkAlpha kFullAlpha = 0xFF;
this->blitAntiH(x, y+i, &kFullAlpha, &kLongestRun);
}
#else
const int startBlockX = (x / BlockDim) * BlockDim;
const int startBlockY = (y / BlockDim) * BlockDim;
const int endBlockX = ((x + width) / BlockDim) * BlockDim;
const int endBlockY = ((y + height) / BlockDim) * BlockDim;
// If start and end are the same, then we only need to update a single block...
if (startBlockY == endBlockY && startBlockX == endBlockX) {
uint8_t mask[BlockDim*BlockDim];
memset(mask, 0, sizeof(mask));
const int xoff = x - startBlockX;
SkASSERT((xoff + width) <= BlockDim);
const int yoff = y - startBlockY;
SkASSERT((yoff + height) <= BlockDim);
for (int j = 0; j < height; ++j) {
memset(mask + (j + yoff)*BlockDim + xoff, 0xFF, width);
}
uint8_t* dst = this->getBlock(startBlockX, startBlockY);
CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
// If start and end are the same in the y dimension, then we can freely update an
// entire row of blocks...
} else if (startBlockY == endBlockY) {
this->updateBlockRow(x, y, width, height, startBlockY, startBlockX, endBlockX);
// Similarly, if the start and end are in the same column, then we can just update
// an entire column of blocks...
} else if (startBlockX == endBlockX) {
this->updateBlockCol(x, y, width, height, startBlockX, startBlockY, endBlockY);
// Otherwise, the rect spans a non-trivial region of blocks, and we have to construct
// a kind of 9-patch to update each of the pieces of the rect. The top and bottom
// rows are updated using updateBlockRow, and the left and right columns are updated
// using updateBlockColumn. Anything in the middle is simply memset to an opaque block
// encoding.
} else {
const int innerStartBlockX = startBlockX + BlockDim;
const int innerStartBlockY = startBlockY + BlockDim;
// Blit top row
const int topRowHeight = innerStartBlockY - y;
this->updateBlockRow(x, y, width, topRowHeight, startBlockY,
startBlockX, endBlockX);
// Advance y
y += topRowHeight;
height -= topRowHeight;
// Blit middle
if (endBlockY > innerStartBlockY) {
// Update left row
this->updateBlockCol(x, y, innerStartBlockX - x, endBlockY, startBlockY,
startBlockX, innerStartBlockX);
// Update the middle with an opaque encoding...
uint8_t mask[BlockDim*BlockDim];
memset(mask, 0xFF, sizeof(mask));
uint8_t opaqueEncoding[EncodedBlockSize];
CompressorType::CompressA8Horizontal(opaqueEncoding, mask, BlockDim);
for (int j = innerStartBlockY; j < endBlockY; j += BlockDim) {
uint8_t* opaqueDst = this->getBlock(innerStartBlockX, j);
for (int i = innerStartBlockX; i < endBlockX; i += BlockDim) {
memcpy(opaqueDst, opaqueEncoding, EncodedBlockSize);
opaqueDst += EncodedBlockSize;
}
}
// If we need to update the right column, do that too
if (x + width > endBlockX) {
this->updateBlockCol(endBlockX, y, x + width - endBlockX, endBlockY,
endBlockX, innerStartBlockY, endBlockY);
}
// Advance y
height = y + height - endBlockY;
y = endBlockY;
}
// If we need to update the last row, then do that, too.
if (height > 0) {
this->updateBlockRow(x, y, width, height, endBlockY,
startBlockX, endBlockX);
}
}
#endif
}
// Blit a rectangle with one alpha-blended column on the left,
// width (zero or more) opaque pixels, and one alpha-blended column
// on the right. The result will always be at least two pixels wide.
virtual void blitAntiRect(int x, int y, int width, int height,
SkAlpha leftAlpha, SkAlpha rightAlpha) SK_OVERRIDE {
// This function is currently not implemented. It is not explicitly
// required by the contract, but if at some time a code path runs into
// this function (which is entirely possible), it needs to be implemented.
//
// TODO (krajcevski):
// This function will be most easily implemented as follows:
// 1. If width/height are smaller than a block, then update the
// indices of the affected blocks.
// 2. If width/height are larger than a block, then construct a 9-patch
// of block encodings that represent the rectangle, and write them
// to the compressed buffer as necessary. Whether or not the blocks
// are overwritten by zeros or just their indices are updated is up
// to debate.
SkFAIL("Not implemented!");
}
// Blit a pattern of pixels defined by a rectangle-clipped mask; We make an
// assumption here that if this function gets called, then it will replace all
// of the compressed texture blocks that it touches. Hence, two separate calls
// to blitMask that have clips next to one another will cause artifacts. Most
// of the time, however, this function gets called because constructing the mask
// was faster than constructing the RLE for blitAntiH, and this function will
// only be called once.
#ifdef SK_DEBUG
bool fBlitMaskCalled;
#endif
virtual void blitMask(const SkMask& mask, const SkIRect& clip) SK_OVERRIDE {
// Assumptions:
SkASSERT(!fBlitMaskCalled && (fBlitMaskCalled = true));
SkASSERT(SkMask::kA8_Format == mask.fFormat);
SkASSERT(mask.fBounds.contains(clip));
// Start from largest block boundary less than the clip boundaries.
const int startI = BlockDim * (clip.left() / BlockDim);
const int startJ = BlockDim * (clip.top() / BlockDim);
for (int j = startJ; j < clip.bottom(); j += BlockDim) {
// Get the destination for this block row
uint8_t* dst = this->getBlock(startI, j);
for (int i = startI; i < clip.right(); i += BlockDim) {
// At this point, the block should intersect the clip.
SkASSERT(SkIRect::IntersectsNoEmptyCheck(
SkIRect::MakeXYWH(i, j, BlockDim, BlockDim), clip));
// Do we need to pad it?
if (i < clip.left() || j < clip.top() ||
i + BlockDim > clip.right() || j + BlockDim > clip.bottom()) {
uint8_t block[BlockDim*BlockDim];
memset(block, 0, sizeof(block));
const int startX = SkMax32(i, clip.left());
const int startY = SkMax32(j, clip.top());
const int endX = SkMin32(i + BlockDim, clip.right());
const int endY = SkMin32(j + BlockDim, clip.bottom());
for (int y = startY; y < endY; ++y) {
const int col = startX - i;
const int row = y - j;
const int valsWide = endX - startX;
SkASSERT(valsWide <= BlockDim);
SkASSERT(0 <= col && col < BlockDim);
SkASSERT(0 <= row && row < BlockDim);
memcpy(block + row*BlockDim + col,
mask.getAddr8(startX, j + row), valsWide);
}
CompressorType::CompressA8Horizontal(dst, block, BlockDim);
} else {
// Otherwise, just compress it.
uint8_t*const src = mask.getAddr8(i, j);
const uint32_t rb = mask.fRowBytes;
CompressorType::CompressA8Horizontal(dst, src, rb);
}
dst += EncodedBlockSize;
}
}
}
// If the blitter just sets a single value for each pixel, return the
// bitmap it draws into, and assign value. If not, return NULL and ignore
// the value parameter.
virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) SK_OVERRIDE {
return NULL;
}
/**
* Compressed texture blitters only really work correctly if they get
* BlockDim rows at a time. That being said, this blitter tries it's best
* to preserve semantics if blitAntiH doesn't get called in too many
* weird ways...
*/
virtual int requestRowsPreserved() const { return BlockDim; }
private:
static const int kPixelsPerBlock = BlockDim * BlockDim;
// The longest possible run of pixels that this blitter will receive.
// This is initialized in the constructor to 0x7FFE, which is one less
// than the largest positive 16-bit integer. We make sure that it's one
// less for debugging purposes. We also don't make this variable static
// in order to make sure that we can construct a valid pointer to it.
const int16_t kLongestRun;
// Usually used in conjunction with kLongestRun. This is initialized to
// zero.
const SkAlpha kZeroAlpha;
// This is the information that we buffer whenever we're asked to blit
// a row with this blitter.
struct BufferedRun {
const SkAlpha* fAlphas;
const int16_t* fRuns;
int fX, fY;
} fBufferedRuns[BlockDim];
// The next row [0, BlockDim) that we need to blit.
int fNextRun;
// The width and height of the image that we're blitting
const int fWidth;
const int fHeight;
// The compressed buffer that we're blitting into. It is assumed that the buffer
// is large enough to store a compressed image of size fWidth*fHeight.
void* const fBuffer;
// Various utility functions
int blocksWide() const { return fWidth / BlockDim; }
int blocksTall() const { return fHeight / BlockDim; }
int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; }
// Returns the block index for the block containing pixel (x, y). Block
// indices start at zero and proceed in raster order.
int getBlockOffset(int x, int y) const {
SkASSERT(x < fWidth);
SkASSERT(y < fHeight);
const int blockCol = x / BlockDim;
const int blockRow = y / BlockDim;
return blockRow * this->blocksWide() + blockCol;
}
// Returns a pointer to the block containing pixel (x, y)
uint8_t *getBlock(int x, int y) const {
uint8_t* ptr = reinterpret_cast<uint8_t*>(fBuffer);
return ptr + EncodedBlockSize*this->getBlockOffset(x, y);
}
// Updates the block whose columns are stored in block. curAlphai is expected
// to store the alpha values that will be placed within each of the columns in
// the range [col, col+colsLeft).
typedef uint32_t Column[BlockDim/4];
typedef uint32_t Block[BlockDim][BlockDim/4];
inline void updateBlockColumns(Block block, const int col,
const int colsLeft, const Column curAlphai) {
SkASSERT(block);
SkASSERT(col + colsLeft <= BlockDim);
for (int i = col; i < (col + colsLeft); ++i) {
memcpy(block[i], curAlphai, sizeof(Column));
}
}
// The following function writes the buffered runs to compressed blocks.
// If fNextRun < BlockDim, then we fill the runs that we haven't buffered with
// the constant zero buffer.
void flushRuns() {
// If we don't have any runs, then just return.
if (0 == fNextRun) {
return;
}
#ifndef NDEBUG
// Make sure that if we have any runs, they all match
for (int i = 1; i < fNextRun; ++i) {
SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1);
SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX);
}
#endif
// If we don't have as many runs as we have rows, fill in the remaining
// runs with constant zeros.
for (int i = fNextRun; i < BlockDim; ++i) {
fBufferedRuns[i].fY = fBufferedRuns[0].fY + i;
fBufferedRuns[i].fX = fBufferedRuns[0].fX;
fBufferedRuns[i].fAlphas = &kZeroAlpha;
fBufferedRuns[i].fRuns = &kLongestRun;
}
// Make sure that our assumptions aren't violated.
SkASSERT(fNextRun > 0 && fNextRun <= BlockDim);
SkASSERT((fBufferedRuns[0].fY % BlockDim) == 0);
// The following logic walks BlockDim rows at a time and outputs compressed
// blocks to the buffer passed into the constructor.
// We do the following:
//
// c1 c2 c3 c4
// -----------------------------------------------------------------------
// ... | | | | | ----> fBufferedRuns[0]
// -----------------------------------------------------------------------
// ... | | | | | ----> fBufferedRuns[1]
// -----------------------------------------------------------------------
// ... | | | | | ----> fBufferedRuns[2]
// -----------------------------------------------------------------------
// ... | | | | | ----> fBufferedRuns[3]
// -----------------------------------------------------------------------
//
// curX -- the macro X value that we've gotten to.
// c[BlockDim] -- the buffers that represent the columns of the current block
// that we're operating on
// curAlphaColumn -- buffer containing the column of alpha values from fBufferedRuns.
// nextX -- for each run, the next point at which we need to update curAlphaColumn
// after the value of curX.
// finalX -- the minimum of all the nextX values.
//
// curX advances to finalX outputting any blocks that it passes along
// the way. Since finalX will not change when we reach the end of a
// run, the termination criteria will be whenever curX == finalX at the
// end of a loop.
// Setup:
Block block;
sk_bzero(block, sizeof(block));
Column curAlphaColumn;
sk_bzero(curAlphaColumn, sizeof(curAlphaColumn));
SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn);
int nextX[BlockDim];
for (int i = 0; i < BlockDim; ++i) {
nextX[i] = 0x7FFFFF;
}
uint8_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY);
// Populate the first set of runs and figure out how far we need to
// advance on the first step
int curX = 0;
int finalX = 0xFFFFF;
for (int i = 0; i < BlockDim; ++i) {
nextX[i] = *(fBufferedRuns[i].fRuns);
curAlpha[i] = *(fBufferedRuns[i].fAlphas);
finalX = SkMin32(nextX[i], finalX);
}
// Make sure that we have a valid right-bound X value
SkASSERT(finalX < 0xFFFFF);
// If the finalX is the longest run, then just blit until we have
// width...
if (kLongestRun == finalX) {
finalX = fWidth;
}
// Run the blitter...
while (curX != finalX) {
SkASSERT(finalX >= curX);
// Do we need to populate the rest of the block?
if ((finalX - (BlockDim*(curX / BlockDim))) >= BlockDim) {
const int col = curX % BlockDim;
const int colsLeft = BlockDim - col;
SkASSERT(curX + colsLeft <= finalX);
this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
// Write this block
CompressorType::CompressA8Vertical(outPtr, reinterpret_cast<uint8_t*>(block));
outPtr += EncodedBlockSize;
curX += colsLeft;
}
// If we can advance even further, then just keep memsetting the block
if ((finalX - curX) >= BlockDim) {
SkASSERT((curX % BlockDim) == 0);
const int col = 0;
const int colsLeft = BlockDim;
this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
// While we can keep advancing, just keep writing the block.
uint8_t lastBlock[EncodedBlockSize];
CompressorType::CompressA8Vertical(lastBlock, reinterpret_cast<uint8_t*>(block));
while((finalX - curX) >= BlockDim) {
memcpy(outPtr, lastBlock, EncodedBlockSize);
outPtr += EncodedBlockSize;
curX += BlockDim;
}
}
// If we haven't advanced within the block then do so.
if (curX < finalX) {
const int col = curX % BlockDim;
const int colsLeft = finalX - curX;
this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
curX += colsLeft;
}
SkASSERT(curX == finalX);
// Figure out what the next advancement is...
if (finalX < fWidth) {
for (int i = 0; i < BlockDim; ++i) {
if (nextX[i] == finalX) {
const int16_t run = *(fBufferedRuns[i].fRuns);
fBufferedRuns[i].fRuns += run;
fBufferedRuns[i].fAlphas += run;
curAlpha[i] = *(fBufferedRuns[i].fAlphas);
nextX[i] += *(fBufferedRuns[i].fRuns);
}
}
finalX = 0xFFFFF;
for (int i = 0; i < BlockDim; ++i) {
finalX = SkMin32(nextX[i], finalX);
}
} else {
curX = finalX;
}
}
// If we didn't land on a block boundary, output the block...
if ((curX % BlockDim) > 0) {
#ifdef SK_DEBUG
for (int i = 0; i < BlockDim; ++i) {
SkASSERT(nextX[i] == kLongestRun || nextX[i] == curX);
}
#endif
const int col = curX % BlockDim;
const int colsLeft = BlockDim - col;
memset(curAlphaColumn, 0, sizeof(curAlphaColumn));
this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
CompressorType::CompressA8Vertical(outPtr, reinterpret_cast<uint8_t*>(block));
}
fNextRun = 0;
}
#if PEDANTIC_BLIT_RECT
void updateBlockRow(int x, int y, int width, int height,
int blockRow, int startBlockX, int endBlockX) {
if (0 == width || 0 == height || startBlockX == endBlockX) {
return;
}
uint8_t* dst = this->getBlock(startBlockX, BlockDim * (y / BlockDim));
// One horizontal strip to update
uint8_t mask[BlockDim*BlockDim];
memset(mask, 0, sizeof(mask));
// Update the left cap
int blockX = startBlockX;
const int yoff = y - blockRow;
for (int j = 0; j < height; ++j) {
const int xoff = x - blockX;
memset(mask + (j + yoff)*BlockDim + xoff, 0xFF, BlockDim - xoff);
}
CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
dst += EncodedBlockSize;
blockX += BlockDim;
// Update the middle
if (blockX < endBlockX) {
for (int j = 0; j < height; ++j) {
memset(mask + (j + yoff)*BlockDim, 0xFF, BlockDim);
}
while (blockX < endBlockX) {
CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
dst += EncodedBlockSize;
blockX += BlockDim;
}
}
SkASSERT(endBlockX == blockX);
// Update the right cap (if we need to)
if (x + width > endBlockX) {
memset(mask, 0, sizeof(mask));
for (int j = 0; j < height; ++j) {
const int xoff = (x+width-blockX);
memset(mask + (j+yoff)*BlockDim, 0xFF, xoff);
}
CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
}
}
void updateBlockCol(int x, int y, int width, int height,
int blockCol, int startBlockY, int endBlockY) {
if (0 == width || 0 == height || startBlockY == endBlockY) {
return;
}
// One vertical strip to update
uint8_t mask[BlockDim*BlockDim];
memset(mask, 0, sizeof(mask));
const int maskX0 = x - blockCol;
const int maskWidth = maskX0 + width;
SkASSERT(maskWidth <= BlockDim);
// Update the top cap
int blockY = startBlockY;
for (int j = (y - blockY); j < BlockDim; ++j) {
memset(mask + maskX0 + j*BlockDim, 0xFF, maskWidth);
}
CompressorType::UpdateBlock(this->getBlock(blockCol, blockY), mask, BlockDim, mask);
blockY += BlockDim;
// Update middle
if (blockY < endBlockY) {
for (int j = 0; j < BlockDim; ++j) {
memset(mask + maskX0 + j*BlockDim, 0xFF, maskWidth);
}
while (blockY < endBlockY) {
CompressorType::UpdateBlock(this->getBlock(blockCol, blockY),
mask, BlockDim, mask);
blockY += BlockDim;
}
}
SkASSERT(endBlockY == blockY);
// Update bottom
if (y + height > endBlockY) {
for (int j = y+height; j < endBlockY + BlockDim; ++j) {
memset(mask + (j-endBlockY)*BlockDim, 0, BlockDim);
}
CompressorType::UpdateBlock(this->getBlock(blockCol, blockY),
mask, BlockDim, mask);
}
}
#endif // PEDANTIC_BLIT_RECT
};
} // namespace SkTextureCompressor
#endif // SkTextureCompressor_Blitter_DEFINED
|