aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/utils/SkTextureCompressor_ASTC.cpp
blob: a6e91d66b8e8c078ea51c2c21f0ebe7f71beae97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
/*
 * Copyright 2014 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkTextureCompressor_ASTC.h"
#include "SkTextureCompressor_Blitter.h"

#include "SkBlitter.h"
#include "SkEndian.h"
#include "SkMath.h"

// This table contains the weight values for each texel. This is used in determining
// how to convert a 12x12 grid of alpha values into a 6x5 grid of index values. Since
// we have a 6x5 grid, that gives 30 values that we have to compute. For each index,
// we store up to 20 different triplets of values. In order the triplets are:
// weight, texel-x, texel-y
// The weight value corresponds to the amount that this index contributes to the final
// index value of the given texel. Hence, we need to reconstruct the 6x5 index grid
// from their relative contribution to the 12x12 texel grid.
//
// The algorithm is something like this:
// foreach index i:
//    total-weight = 0;
//    total-alpha = 0;
//    for w = 1 to 20:
//       weight = table[i][w*3];
//       texel-x = table[i][w*3 + 1];
//       texel-y = table[i][w*3 + 2];
//       if weight >= 0:
//           total-weight += weight;
//           total-alpha += weight * alphas[texel-x][texel-y];
//
//    total-alpha /= total-weight;
//    index = top three bits of total-alpha
//
// If the associated index does not contribute to 20 different texels (e.g. it's in
// a corner), then the extra texels are stored with -1's in the table.

static const int8_t k6x5To12x12Table[30][60] = {
{ 16, 0, 0, 9, 1, 0, 1, 2, 0, 10, 0, 1, 6, 1, 1, 1, 2, 1, 4, 0, 2, 2,
  1, 2, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0,
  0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20
{ 7, 1, 0, 15, 2, 0, 10, 3, 0, 3, 4, 0, 4, 1, 1, 9, 2, 1, 6, 3, 1, 2,
  4, 1, 2, 1, 2, 4, 2, 2, 3, 3, 2, 1, 4, 2, -1, 0, 0, -1, 0, 0, -1, 0,
  0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20
{ 6, 3, 0, 13, 4, 0, 12, 5, 0, 4, 6, 0, 4, 3, 1, 8, 4, 1, 8, 5, 1, 3,
  6, 1, 1, 3, 2, 3, 4, 2, 3, 5, 2, 1, 6, 2, -1, 0, 0, -1, 0, 0, -1, 0,
  0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20
{ 4, 5, 0, 12, 6, 0, 13, 7, 0, 6, 8, 0, 2, 5, 1, 7, 6, 1, 8, 7, 1, 4,
  8, 1, 1, 5, 2, 3, 6, 2, 3, 7, 2, 2, 8, 2, -1, 0, 0, -1, 0, 0, -1, 0,
  0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20
{ 3, 7, 0, 10, 8, 0, 15, 9, 0, 7, 10, 0, 2, 7, 1, 6, 8, 1, 9, 9, 1, 4,
  10, 1, 1, 7, 2, 2, 8, 2, 4, 9, 2, 2, 10, 2, -1, 0, 0, -1, 0, 0, -1, 0,
  0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20
{ 1, 9, 0, 9, 10, 0, 16, 11, 0, 1, 9, 1, 6, 10, 1, 10, 11, 1, 2, 10, 2, 4,
  11, 2, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0,
  0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20
{ 6, 0, 1, 3, 1, 1, 12, 0, 2, 7, 1, 2, 1, 2, 2, 15, 0, 3, 8, 1, 3, 1,
  2, 3, 9, 0, 4, 5, 1, 4, 1, 2, 4, 3, 0, 5, 2, 1, 5, -1, 0, 0, -1, 0,
  0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20
{ 3, 1, 1, 6, 2, 1, 4, 3, 1, 1, 4, 1, 5, 1, 2, 11, 2, 2, 7, 3, 2, 2,
  4, 2, 7, 1, 3, 14, 2, 3, 9, 3, 3, 3, 4, 3, 4, 1, 4, 8, 2, 4, 6, 3,
  4, 2, 4, 4, 1, 1, 5, 3, 2, 5, 2, 3, 5, 1, 4, 5}, // n = 20
{ 2, 3, 1, 5, 4, 1, 4, 5, 1, 1, 6, 1, 5, 3, 2, 10, 4, 2, 9, 5, 2, 3,
  6, 2, 6, 3, 3, 12, 4, 3, 11, 5, 3, 4, 6, 3, 3, 3, 4, 7, 4, 4, 7, 5,
  4, 2, 6, 4, 1, 3, 5, 2, 4, 5, 2, 5, 5, 1, 6, 5}, // n = 20
{ 2, 5, 1, 5, 6, 1, 5, 7, 1, 2, 8, 1, 3, 5, 2, 9, 6, 2, 10, 7, 2, 4,
  8, 2, 4, 5, 3, 11, 6, 3, 12, 7, 3, 6, 8, 3, 2, 5, 4, 7, 6, 4, 7, 7,
  4, 3, 8, 4, 1, 5, 5, 2, 6, 5, 2, 7, 5, 1, 8, 5}, // n = 20
{ 1, 7, 1, 4, 8, 1, 6, 9, 1, 3, 10, 1, 2, 7, 2, 8, 8, 2, 11, 9, 2, 5,
  10, 2, 3, 7, 3, 9, 8, 3, 14, 9, 3, 7, 10, 3, 2, 7, 4, 6, 8, 4, 8, 9,
  4, 4, 10, 4, 1, 7, 5, 2, 8, 5, 3, 9, 5, 1, 10, 5}, // n = 20
{ 3, 10, 1, 6, 11, 1, 1, 9, 2, 7, 10, 2, 12, 11, 2, 1, 9, 3, 8, 10, 3, 15,
  11, 3, 1, 9, 4, 5, 10, 4, 9, 11, 4, 2, 10, 5, 3, 11, 5, -1, 0, 0, -1, 0,
  0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20
{ 1, 0, 3, 1, 1, 3, 7, 0, 4, 4, 1, 4, 13, 0, 5, 7, 1, 5, 1, 2, 5, 13,
  0, 6, 7, 1, 6, 1, 2, 6, 7, 0, 7, 4, 1, 7, 1, 0, 8, 1, 1, 8, -1, 0,
  0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20
{ 1, 2, 3, 1, 3, 3, 3, 1, 4, 7, 2, 4, 4, 3, 4, 1, 4, 4, 6, 1, 5, 12,
  2, 5, 8, 3, 5, 2, 4, 5, 6, 1, 6, 12, 2, 6, 8, 3, 6, 2, 4, 6, 3, 1,
  7, 7, 2, 7, 4, 3, 7, 1, 4, 7, 1, 2, 8, 1, 3, 8}, // n = 20
{ 1, 4, 3, 1, 5, 3, 3, 3, 4, 6, 4, 4, 5, 5, 4, 2, 6, 4, 5, 3, 5, 11,
  4, 5, 10, 5, 5, 3, 6, 5, 5, 3, 6, 11, 4, 6, 10, 5, 6, 3, 6, 6, 3, 3,
  7, 6, 4, 7, 5, 5, 7, 2, 6, 7, 1, 4, 8, 1, 5, 8}, // n = 20
{ 1, 6, 3, 1, 7, 3, 2, 5, 4, 5, 6, 4, 6, 7, 4, 3, 8, 4, 3, 5, 5, 10,
  6, 5, 11, 7, 5, 5, 8, 5, 3, 5, 6, 10, 6, 6, 11, 7, 6, 5, 8, 6, 2, 5,
  7, 5, 6, 7, 6, 7, 7, 3, 8, 7, 1, 6, 8, 1, 7, 8}, // n = 20
{ 1, 8, 3, 1, 9, 3, 1, 7, 4, 4, 8, 4, 7, 9, 4, 3, 10, 4, 2, 7, 5, 8,
  8, 5, 12, 9, 5, 6, 10, 5, 2, 7, 6, 8, 8, 6, 12, 9, 6, 6, 10, 6, 1, 7,
  7, 4, 8, 7, 7, 9, 7, 3, 10, 7, 1, 8, 8, 1, 9, 8}, // n = 20
{ 1, 10, 3, 1, 11, 3, 4, 10, 4, 7, 11, 4, 1, 9, 5, 7, 10, 5, 13, 11, 5, 1,
  9, 6, 7, 10, 6, 13, 11, 6, 4, 10, 7, 7, 11, 7, 1, 10, 8, 1, 11, 8, -1, 0,
  0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20
{ 3, 0, 6, 2, 1, 6, 9, 0, 7, 5, 1, 7, 1, 2, 7, 15, 0, 8, 8, 1, 8, 1,
  2, 8, 12, 0, 9, 7, 1, 9, 1, 2, 9, 6, 0, 10, 3, 1, 10, -1, 0, 0, -1, 0,
  0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20
{ 1, 1, 6, 3, 2, 6, 2, 3, 6, 1, 4, 6, 4, 1, 7, 8, 2, 7, 6, 3, 7, 2,
  4, 7, 7, 1, 8, 14, 2, 8, 9, 3, 8, 3, 4, 8, 5, 1, 9, 11, 2, 9, 8, 3,
  9, 2, 4, 9, 3, 1, 10, 6, 2, 10, 4, 3, 10, 1, 4, 10}, // n = 20
{ 1, 3, 6, 2, 4, 6, 2, 5, 6, 1, 6, 6, 3, 3, 7, 7, 4, 7, 7, 5, 7, 2,
  6, 7, 6, 3, 8, 12, 4, 8, 11, 5, 8, 4, 6, 8, 4, 3, 9, 10, 4, 9, 9, 5,
  9, 3, 6, 9, 2, 3, 10, 5, 4, 10, 5, 5, 10, 2, 6, 10}, // n = 20
{ 1, 5, 6, 2, 6, 6, 2, 7, 6, 1, 8, 6, 2, 5, 7, 7, 6, 7, 7, 7, 7, 3,
  8, 7, 4, 5, 8, 11, 6, 8, 12, 7, 8, 6, 8, 8, 3, 5, 9, 9, 6, 9, 10, 7,
  9, 5, 8, 9, 1, 5, 10, 4, 6, 10, 5, 7, 10, 2, 8, 10}, // n = 20
{ 1, 7, 6, 2, 8, 6, 3, 9, 6, 1, 10, 6, 2, 7, 7, 6, 8, 7, 8, 9, 7, 4,
  10, 7, 3, 7, 8, 9, 8, 8, 14, 9, 8, 7, 10, 8, 2, 7, 9, 7, 8, 9, 11, 9,
  9, 5, 10, 9, 1, 7, 10, 4, 8, 10, 6, 9, 10, 3, 10, 10}, // n = 20
{ 2, 10, 6, 3, 11, 6, 1, 9, 7, 5, 10, 7, 9, 11, 7, 1, 9, 8, 8, 10, 8, 15,
  11, 8, 1, 9, 9, 7, 10, 9, 12, 11, 9, 3, 10, 10, 6, 11, 10, -1, 0, 0, -1, 0,
  0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20
{ 4, 0, 9, 2, 1, 9, 10, 0, 10, 6, 1, 10, 1, 2, 10, 16, 0, 11, 9, 1, 11, 1,
  2, 11, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0,
  0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20
{ 2, 1, 9, 4, 2, 9, 2, 3, 9, 1, 4, 9, 4, 1, 10, 9, 2, 10, 6, 3, 10, 2,
  4, 10, 7, 1, 11, 15, 2, 11, 10, 3, 11, 3, 4, 11, -1, 0, 0, -1, 0, 0, -1, 0,
  0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20
{ 2, 3, 9, 3, 4, 9, 3, 5, 9, 1, 6, 9, 4, 3, 10, 8, 4, 10, 7, 5, 10, 2,
  6, 10, 6, 3, 11, 13, 4, 11, 12, 5, 11, 4, 6, 11, -1, 0, 0, -1, 0, 0, -1, 0,
  0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20
{ 1, 5, 9, 3, 6, 9, 3, 7, 9, 1, 8, 9, 3, 5, 10, 8, 6, 10, 8, 7, 10, 4,
  8, 10, 4, 5, 11, 12, 6, 11, 13, 7, 11, 6, 8, 11, -1, 0, 0, -1, 0, 0, -1, 0,
  0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20
{ 1, 7, 9, 3, 8, 9, 4, 9, 9, 2, 10, 9, 2, 7, 10, 6, 8, 10, 9, 9, 10, 4,
  10, 10, 3, 7, 11, 10, 8, 11, 15, 9, 11, 7, 10, 11, -1, 0, 0, -1, 0, 0, -1, 0,
  0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20
{ 2, 10, 9, 4, 11, 9, 1, 9, 10, 6, 10, 10, 10, 11, 10, 1, 9, 11, 9, 10, 11, 16,
  11, 11, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0,
  0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0} // n = 20
};

// Returns the alpha value of a texel at position (x, y) from src.
// (x, y) are assumed to be in the range [0, 12).
inline uint8_t GetAlpha(const uint8_t *src, size_t rowBytes, int x, int y) {
    SkASSERT(x >= 0 && x < 12);
    SkASSERT(y >= 0 && y < 12);
    SkASSERT(rowBytes >= 12);
    return *(src + y*rowBytes + x);
}

inline uint8_t GetAlphaTranspose(const uint8_t *src, size_t rowBytes, int x, int y) {
    return GetAlpha(src, rowBytes, y, x);
}

// Output the 16 bytes stored in top and bottom and advance the pointer. The bytes
// are stored as the integers are represented in memory, so they should be swapped
// if necessary.
static inline void send_packing(uint8_t** dst, const uint64_t top, const uint64_t bottom) {
    uint64_t* dst64 = reinterpret_cast<uint64_t*>(*dst);
    dst64[0] = top;
    dst64[1] = bottom;
    *dst += 16;
}

// Compresses an ASTC block, by looking up the proper contributions from
// k6x5To12x12Table and computing an index from the associated values.
typedef uint8_t (*GetAlphaProc)(const uint8_t* src, size_t rowBytes, int x, int y);

template<GetAlphaProc getAlphaProc>
static void compress_a8_astc_block(uint8_t** dst, const uint8_t* src, size_t rowBytes) {
    // Check for single color
    bool constant = true;
    const uint32_t firstInt = *(reinterpret_cast<const uint32_t*>(src));
    for (int i = 0; i < 12; ++i) {
        const uint32_t *rowInt = reinterpret_cast<const uint32_t *>(src + i*rowBytes);
        constant = constant && (rowInt[0] == firstInt);
        constant = constant && (rowInt[1] == firstInt);
        constant = constant && (rowInt[2] == firstInt);
    }

    if (constant) {
        if (0 == firstInt) {
            // All of the indices are set to zero, and the colors are
            // v0 = 0, v1 = 255, so everything will be transparent.
            send_packing(dst, SkTEndian_SwapLE64(0x0000000001FE000173ULL), 0);
            return;
        } else if (0xFFFFFFFF == firstInt) {
            // All of the indices are set to zero, and the colors are
            // v0 = 255, v1 = 0, so everything will be opaque.
            send_packing(dst, SkTEndian_SwapLE64(0x000000000001FE0173ULL), 0);
            return;
        }
    }

    uint8_t indices[30]; // 6x5 index grid
    for (int idx = 0; idx < 30; ++idx) {
        int weightTot = 0;
        int alphaTot = 0;
        for (int w = 0; w < 20; ++w) {
            const int8_t weight = k6x5To12x12Table[idx][w*3];
            if (weight > 0) {
                const int x = k6x5To12x12Table[idx][w*3 + 1];
                const int y = k6x5To12x12Table[idx][w*3 + 2];
                weightTot += weight;
                alphaTot += weight * getAlphaProc(src, rowBytes, x, y);
            } else {
                // In our table, not every entry has 20 weights, and all
                // of them are nonzero. Once we hit a negative weight, we
                // know that all of the other weights are not valid either.
                break;
            }
        }

        indices[idx] = (alphaTot / weightTot) >> 5;
    }

    // Pack indices... The ASTC block layout is fairly complicated. An extensive
    // description can be found here:
    // https://www.opengl.org/registry/specs/KHR/texture_compression_astc_hdr.txt
    //
    // Here is a summary of the options that we've chosen:
    // 1. Block mode: 0b00101110011
    //     - 6x5 texel grid
    //     - Single plane
    //     - Low-precision index values
    //     - Index range 0-7 (three bits per index)
    // 2. Partitions: 0b00 
    //     - One partition
    // 3. Color Endpoint Mode: 0b0000
    //     - Direct luminance -- e0=(v0,v0,v0,0xFF); e1=(v1,v1,v1,0xFF);
    // 4. 8-bit endpoints:
    //     v0 = 0, v1 = 255
    //
    // The rest of the block contains the 30 index values from before, which
    // are currently stored in the indices variable.

    uint64_t top = 0x0000000001FE000173ULL;
    uint64_t bottom = 0;

    for (int idx = 0; idx <= 20; ++idx) {
        const uint8_t index = indices[idx];
        bottom |= static_cast<uint64_t>(index) << (61-(idx*3));
    }

    // index 21 straddles top and bottom
    {
        const uint8_t index = indices[21];
        bottom |= index & 1;
        top |= static_cast<uint64_t>((index >> 2) | (index & 2)) << 62;
    }

    for (int idx = 22; idx < 30; ++idx) {
        const uint8_t index = indices[idx];
        top |= static_cast<uint64_t>(index) << (59-(idx-22)*3);
    }

    // Reverse each 3-bit index since indices are read in reverse order...
    uint64_t t = (bottom ^ (bottom >> 2)) & 0x2492492492492492ULL;
    bottom = bottom ^ t ^ (t << 2);

    t = (top ^ (top >> 2)) & 0x0924924000000000ULL;
    top = top ^ t ^ (t << 2);

    send_packing(dst, SkEndian_SwapLE64(top), SkEndian_SwapLE64(bottom));
}

inline void CompressA8ASTCBlockVertical(uint8_t* dst, const uint8_t* src) {
    compress_a8_astc_block<GetAlphaTranspose>(&dst, src, 12);
}

////////////////////////////////////////////////////////////////////////////////
//
// ASTC Decoder
//
// Full details available in the spec:
// http://www.khronos.org/registry/gles/extensions/OES/OES_texture_compression_astc.txt
//
////////////////////////////////////////////////////////////////////////////////

// Enable this to assert whenever a decoded block has invalid ASTC values. Otherwise, 
// each invalid block will result in a disgusting magenta color.
#define ASSERT_ASTC_DECODE_ERROR 0

// Reverse 64-bit integer taken from TAOCP 4a, although it's better
// documented at this site:
// http://matthewarcus.wordpress.com/2012/11/18/reversing-a-64-bit-word/

template <typename T, T m, int k>
static inline T swap_bits(T p) {
    T q = ((p>>k)^p) & m;
    return p^q^(q<<k);
}

static inline uint64_t reverse64(uint64_t n) {
    static const uint64_t m0 = 0x5555555555555555ULL;
    static const uint64_t m1 = 0x0300c0303030c303ULL;
    static const uint64_t m2 = 0x00c0300c03f0003fULL;
    static const uint64_t m3 = 0x00000ffc00003fffULL;
    n = ((n>>1)&m0) | (n&m0)<<1;
    n = swap_bits<uint64_t, m1, 4>(n);
    n = swap_bits<uint64_t, m2, 8>(n);
    n = swap_bits<uint64_t, m3, 20>(n);
    n = (n >> 34) | (n << 30);
    return n;
}

// An ASTC block is 128 bits. We represent it as two 64-bit integers in order
// to efficiently operate on the block using bitwise operations.
struct ASTCBlock {
    uint64_t fLow;
    uint64_t fHigh;

    // Reverses the bits of an ASTC block, making the LSB of the
    // 128 bit block the MSB.
    inline void reverse() {
        const uint64_t newLow = reverse64(this->fHigh);
        this->fHigh = reverse64(this->fLow);
        this->fLow = newLow;
    }
};

// Writes the given color to every pixel in the block. This is used by void-extent
// blocks (a special constant-color encoding of a block) and by the error function.
static inline void write_constant_color(uint8_t* dst, int blockDimX, int blockDimY,
                                        int dstRowBytes, SkColor color) {
    for (int y = 0; y < blockDimY; ++y) {
        SkColor *dstColors = reinterpret_cast<SkColor*>(dst);
        for (int x = 0; x < blockDimX; ++x) {
            dstColors[x] = color;
        }
        dst += dstRowBytes;
    }
}

// Sets the entire block to the ASTC "error" color, a disgusting magenta
// that's not supposed to appear in natural images.
static inline void write_error_color(uint8_t* dst, int blockDimX, int blockDimY,
                                     int dstRowBytes) {
    static const SkColor kASTCErrorColor = SkColorSetRGB(0xFF, 0, 0xFF);

#if ASSERT_ASTC_DECODE_ERROR
    SkDEBUGFAIL("ASTC decoding error!\n");
#endif

    write_constant_color(dst, blockDimX, blockDimY, dstRowBytes, kASTCErrorColor);
}

// Reads up to 64 bits of the ASTC block starting from bit
// 'from' and going up to but not including bit 'to'. 'from' starts
// counting from the LSB, counting up to the MSB. Returns -1 on
// error.
static uint64_t read_astc_bits(const ASTCBlock &block, int from, int to) {
    SkASSERT(0 <= from && from <= 128);
    SkASSERT(0 <= to && to <= 128);

    const int nBits = to - from;
    if (0 == nBits) {
        return 0;
    }

    if (nBits < 0 || 64 <= nBits) {
        SkDEBUGFAIL("ASTC -- shouldn't read more than 64 bits");
        return -1;
    }

    // Remember, the 'to' bit isn't read.
    uint64_t result = 0;
    if (to <= 64) {
        // All desired bits are in the low 64-bits.
        result = (block.fLow >> from) & ((1ULL << nBits) - 1);
    } else if (from >= 64) {
        // All desired bits are in the high 64-bits.
        result = (block.fHigh >> (from - 64)) & ((1ULL << nBits) - 1);
    } else {
        // from < 64 && to > 64
        SkASSERT(nBits > (64 - from));
        const int nLow = 64 - from;
        const int nHigh = nBits - nLow;
        result = 
            ((block.fLow >> from) & ((1ULL << nLow) - 1)) |
            ((block.fHigh & ((1ULL << nHigh) - 1)) << nLow);
    }

    return result;
}

// Returns the number of bits needed to represent a number
// in the given power-of-two range (excluding the power of two itself).
static inline int bits_for_range(int x) {
    SkASSERT(SkIsPow2(x));
    SkASSERT(0 != x);
    // Since we know it's a power of two, there should only be one bit set,
    // meaning the number of trailing zeros is 31 minus the number of leading
    // zeros.
    return 31 - SkCLZ(x);
}

// Clamps an integer to the range [0, 255]
static inline int clamp_byte(int x) {
    return SkClampMax(x, 255);
}

// Helper function defined in the ASTC spec, section C.2.14
// It transfers a few bits of precision from one value to another.
static inline void bit_transfer_signed(int *a, int *b) {
    *b >>= 1;
    *b |= *a & 0x80;
    *a >>= 1;
    *a &= 0x3F;
    if ( (*a & 0x20) != 0 ) {
        *a -= 0x40;
    }
}

// Helper function defined in the ASTC spec, section C.2.14
// It uses the value in the blue channel to tint the red and green
static inline SkColor blue_contract(int a, int r, int g, int b) {
    return SkColorSetARGB(a, (r + b) >> 1, (g + b) >> 1, b);
}

// Helper function that decodes two colors from eight values. If isRGB is true,
// then the pointer 'v' contains six values and the last two are considered to be
// 0xFF. If isRGB is false, then all eight values come from the pointer 'v'. This
// corresponds to the decode procedure for the following endpoint modes:
//   kLDR_RGB_Direct_ColorEndpointMode
//   kLDR_RGBA_Direct_ColorEndpointMode
static inline void decode_rgba_direct(const int *v, SkColor *endpoints, bool isRGB) {

    int v6 = 0xFF;
    int v7 = 0xFF;
    if (!isRGB) {
        v6 = v[6];
        v7 = v[7];
    }

    const int s0 = v[0] + v[2] + v[4];
    const int s1 = v[1] + v[3] + v[5];

    if (s1 >= s0) {
        endpoints[0] = SkColorSetARGB(v6, v[0], v[2], v[4]);
        endpoints[1] = SkColorSetARGB(v7, v[1], v[3], v[5]);
    } else {
        endpoints[0] = blue_contract(v7, v[1], v[3], v[5]);
        endpoints[1] = blue_contract(v6, v[0], v[2], v[4]);
    }
}

// Helper function that decodes two colors from six values. If isRGB is true,
// then the pointer 'v' contains four values and the last two are considered to be
// 0xFF. If isRGB is false, then all six values come from the pointer 'v'. This
// corresponds to the decode procedure for the following endpoint modes:
//   kLDR_RGB_BaseScale_ColorEndpointMode
//   kLDR_RGB_BaseScaleWithAlpha_ColorEndpointMode
static inline void decode_rgba_basescale(const int *v, SkColor *endpoints, bool isRGB) {

    int v4 = 0xFF;
    int v5 = 0xFF;
    if (!isRGB) {
        v4 = v[4];
        v5 = v[5];
    }
                  
    endpoints[0] = SkColorSetARGB(v4,
                                  (v[0]*v[3]) >> 8,
                                  (v[1]*v[3]) >> 8,
                                  (v[2]*v[3]) >> 8);
    endpoints[1] = SkColorSetARGB(v5, v[0], v[1], v[2]);
}

// Helper function that decodes two colors from eight values. If isRGB is true,
// then the pointer 'v' contains six values and the last two are considered to be
// 0xFF. If isRGB is false, then all eight values come from the pointer 'v'. This
// corresponds to the decode procedure for the following endpoint modes:
//   kLDR_RGB_BaseOffset_ColorEndpointMode
//   kLDR_RGBA_BaseOffset_ColorEndpointMode
//
// If isRGB is true, then treat this as if v6 and v7 are meant to encode full alpha values.
static inline void decode_rgba_baseoffset(const int *v, SkColor *endpoints, bool isRGB) {
    int v0 = v[0];
    int v1 = v[1];
    int v2 = v[2];
    int v3 = v[3];
    int v4 = v[4];
    int v5 = v[5];
    int v6 = isRGB ? 0xFF : v[6];
    // The 0 is here because this is an offset, not a direct value
    int v7 = isRGB ? 0 : v[7];

    bit_transfer_signed(&v1, &v0);
    bit_transfer_signed(&v3, &v2);
    bit_transfer_signed(&v5, &v4);
    if (!isRGB) {
        bit_transfer_signed(&v7, &v6);
    }

    int c[2][4];
    if ((v1 + v3 + v5) >= 0) {
        c[0][0] = v6;
        c[0][1] = v0;
        c[0][2] = v2;
        c[0][3] = v4;

        c[1][0] = v6 + v7;
        c[1][1] = v0 + v1;
        c[1][2] = v2 + v3;
        c[1][3] = v4 + v5;
    } else {
        c[0][0] = v6 + v7;
        c[0][1] = (v0 + v1 + v4 + v5) >> 1;
        c[0][2] = (v2 + v3 + v4 + v5) >> 1;
        c[0][3] = v4 + v5;

        c[1][0] = v6;
        c[1][1] = (v0 + v4) >> 1;
        c[1][2] = (v2 + v4) >> 1;
        c[1][3] = v4;
    }

    endpoints[0] = SkColorSetARGB(clamp_byte(c[0][0]),
                                  clamp_byte(c[0][1]),
                                  clamp_byte(c[0][2]),
                                  clamp_byte(c[0][3]));

    endpoints[1] = SkColorSetARGB(clamp_byte(c[1][0]),
                                  clamp_byte(c[1][1]),
                                  clamp_byte(c[1][2]),
                                  clamp_byte(c[1][3]));
}


// A helper class used to decode bit values from standard integer values.
// We can't use this class with ASTCBlock because then it would need to
// handle multi-value ranges, and it's non-trivial to lookup a range of bits
// that splits across two different ints.
template <typename T>
class SkTBits {
public:
    SkTBits(const T val) : fVal(val) { }

    // Returns the bit at the given position
    T operator [](const int idx) const {
        return (fVal >> idx) & 1;
    }

    // Returns the bits in the given range, inclusive
    T operator ()(const int end, const int start) const {
        SkASSERT(end >= start);
        return (fVal >> start) & ((1ULL << ((end - start) + 1)) - 1);
    }

private:
    const T fVal;
};

// This algorithm matches the trit block decoding in the spec (Table C.2.14)
static void decode_trit_block(int* dst, int nBits, const uint64_t &block) {

    SkTBits<uint64_t> blockBits(block);

    // According to the spec, a trit block, which contains five values,
    // has the following layout:
    //
    // 27  26  25  24  23  22  21  20  19  18  17  16
    //  -----------------------------------------------
    // |T7 |     m4        |T6  T5 |     m3        |T4 |
    //  -----------------------------------------------
    //
    // 15  14  13  12  11  10  9   8   7   6   5   4   3   2   1   0
    //  --------------------------------------------------------------
    // |    m2        |T3  T2 |      m1       |T1  T0 |      m0       |
    //  --------------------------------------------------------------
    //
    // Where the m's are variable width depending on the number of bits used
    // to encode the values (anywhere from 0 to 6). Since 3^5 = 243, the extra
    // byte labeled T (whose bits are interleaved where 0 is the LSB and 7 is
    // the MSB), contains five trit values. To decode the trit values, the spec
    // says that we need to follow the following algorithm:
    //
    // if T[4:2] = 111
    //     C = { T[7:5], T[1:0] }; t4 = t3 = 2
    // else
    //     C = T[4:0]
    //
    // if T[6:5] = 11
    //     t4 = 2; t3 = T[7]
    // else
    //     t4 = T[7]; t3 = T[6:5]
    //
    // if C[1:0] = 11
    //     t2 = 2; t1 = C[4]; t0 = { C[3], C[2]&~C[3] }
    // else if C[3:2] = 11
    //     t2 = 2; t1 = 2; t0 = C[1:0]
    // else
    //     t2 = C[4]; t1 = C[3:2]; t0 = { C[1], C[0]&~C[1] }
    //
    // The following C++ code is meant to mirror this layout and algorithm as
    // closely as possible.

    int m[5];
    if (0 == nBits) {
        memset(m, 0, sizeof(m));
    } else {
        SkASSERT(nBits < 8);
        m[0] = static_cast<int>(blockBits(nBits - 1, 0));
        m[1] = static_cast<int>(blockBits(2*nBits - 1 + 2, nBits + 2));
        m[2] = static_cast<int>(blockBits(3*nBits - 1 + 4, 2*nBits + 4));
        m[3] = static_cast<int>(blockBits(4*nBits - 1 + 5, 3*nBits + 5));
        m[4] = static_cast<int>(blockBits(5*nBits - 1 + 7, 4*nBits + 7));
    }

    int T =
        static_cast<int>(blockBits(nBits + 1, nBits)) |
        (static_cast<int>(blockBits(2*nBits + 2 + 1, 2*nBits + 2)) << 2) |
        (static_cast<int>(blockBits[3*nBits + 4] << 4)) |
        (static_cast<int>(blockBits(4*nBits + 5 + 1, 4*nBits + 5)) << 5) |
        (static_cast<int>(blockBits[5*nBits + 7] << 7));

    int t[5];

    int C;
    SkTBits<int> Tbits(T);
    if (0x7 == Tbits(4, 2)) {
        C = (Tbits(7, 5) << 2) | Tbits(1, 0);
        t[3] = t[4] = 2;
    } else {
        C = Tbits(4, 0);
        if (Tbits(6, 5) == 0x3) {
            t[4] = 2; t[3] = Tbits[7];
        } else {
            t[4] = Tbits[7]; t[3] = Tbits(6, 5);
        }
    }

    SkTBits<int> Cbits(C);
    if (Cbits(1, 0) == 0x3) {
        t[2] = 2;
        t[1] = Cbits[4];
        t[0] = (Cbits[3] << 1) | (Cbits[2] & (0x1 & ~(Cbits[3])));
    } else if (Cbits(3, 2) == 0x3) {
        t[2] = 2;
        t[1] = 2;
        t[0] = Cbits(1, 0);
    } else {
        t[2] = Cbits[4];
        t[1] = Cbits(3, 2);
        t[0] = (Cbits[1] << 1) | (Cbits[0] & (0x1 & ~(Cbits[1])));
    }

#ifdef SK_DEBUG
    // Make sure all of the decoded values have a trit less than three
    // and a bit value within the range of the allocated bits.
    for (int i = 0; i < 5; ++i) {
        SkASSERT(t[i] < 3);
        SkASSERT(m[i] < (1 << nBits));
    }
#endif

    for (int i = 0; i < 5; ++i) {
        *dst = (t[i] << nBits) + m[i];
        ++dst;
    }
}

// This algorithm matches the quint block decoding in the spec (Table C.2.15)
static void decode_quint_block(int* dst, int nBits, const uint64_t &block) {
    SkTBits<uint64_t> blockBits(block);

    // According to the spec, a quint block, which contains three values,
    // has the following layout:
    //
    //
    // 18  17  16  15  14  13  12  11  10  9   8   7   6   5   4   3   2   1   0
    //  --------------------------------------------------------------------------
    // |Q6  Q5 |     m2       |Q4  Q3 |     m1        |Q2  Q1  Q0 |      m0       |
    //  --------------------------------------------------------------------------
    //
    // Where the m's are variable width depending on the number of bits used
    // to encode the values (anywhere from 0 to 4). Since 5^3 = 125, the extra
    // 7-bit value labeled Q (whose bits are interleaved where 0 is the LSB and 6 is
    // the MSB), contains three quint values. To decode the quint values, the spec
    // says that we need to follow the following algorithm:
    //
    // if Q[2:1] = 11 and Q[6:5] = 00
    //     q2 = { Q[0], Q[4]&~Q[0], Q[3]&~Q[0] }; q1 = q0 = 4
    // else
    //     if Q[2:1] = 11
    //         q2 = 4; C = { Q[4:3], ~Q[6:5], Q[0] }
    //     else
    //         q2 = T[6:5]; C = Q[4:0]
    //
    //     if C[2:0] = 101
    //         q1 = 4; q0 = C[4:3]
    //     else
    //         q1 = C[4:3]; q0 = C[2:0]
    //
    // The following C++ code is meant to mirror this layout and algorithm as
    // closely as possible.

    int m[3];
    if (0 == nBits) {
        memset(m, 0, sizeof(m));
    } else {
        SkASSERT(nBits < 8);
        m[0] = static_cast<int>(blockBits(nBits - 1, 0));
        m[1] = static_cast<int>(blockBits(2*nBits - 1 + 3, nBits + 3));
        m[2] = static_cast<int>(blockBits(3*nBits - 1 + 5, 2*nBits + 5));
    }

    int Q =
        static_cast<int>(blockBits(nBits + 2, nBits)) |
        (static_cast<int>(blockBits(2*nBits + 3 + 1, 2*nBits + 3)) << 3) |
        (static_cast<int>(blockBits(3*nBits + 5 + 1, 3*nBits + 5)) << 5);

    int q[3];
    SkTBits<int> Qbits(Q); // quantum?

    if (Qbits(2, 1) == 0x3 && Qbits(6, 5) == 0) {
        const int notBitZero = (0x1 & ~(Qbits[0]));
        q[2] = (Qbits[0] << 2) | ((Qbits[4] & notBitZero) << 1) | (Qbits[3] & notBitZero);
        q[1] = 4;
        q[0] = 4;
    } else {
        int C;
        if (Qbits(2, 1) == 0x3) {
            q[2] = 4;
            C = (Qbits(4, 3) << 3) | ((0x3 & ~(Qbits(6, 5))) << 1) | Qbits[0];
        } else {
            q[2] = Qbits(6, 5);
            C = Qbits(4, 0);
        }

        SkTBits<int> Cbits(C);
        if (Cbits(2, 0) == 0x5) {
            q[1] = 4;
            q[0] = Cbits(4, 3);
        } else {
            q[1] = Cbits(4, 3);
            q[0] = Cbits(2, 0);
        }
    }

#ifdef SK_DEBUG
    for (int i = 0; i < 3; ++i) {
        SkASSERT(q[i] < 5);
        SkASSERT(m[i] < (1 << nBits));
    }
#endif

    for (int i = 0; i < 3; ++i) {
        *dst = (q[i] << nBits) + m[i];
        ++dst;
    }
}

// Function that decodes a sequence of integers stored as an ISE (Integer
// Sequence Encoding) bit stream. The full details of this function are outlined
// in section C.2.12 of the ASTC spec. A brief overview is as follows:
//
// - Each integer in the sequence is bounded by a specific range r.
// - The range of each value determines the way the bit stream is interpreted,
// - If the range is a power of two, then the sequence is a sequence of bits
// - If the range is of the form 3*2^n, then the sequence is stored as a
//   sequence of blocks, each block contains 5 trits and 5 bit sequences, which
//   decodes into 5 values.
// - Similarly, if the range is of the form 5*2^n, then the sequence is stored as a
//   sequence of blocks, each block contains 3 quints and 3 bit sequences, which
//   decodes into 3 values.
static bool decode_integer_sequence(
    int* dst,                 // The array holding the destination bits
    int dstSize,              // The maximum size of the array
    int nVals,                // The number of values that we'd like to decode
    const ASTCBlock &block,   // The block that we're decoding from
    int startBit,             // The bit from which we're going to do the reading
    int endBit,               // The bit at which we stop reading (not inclusive)
    bool bReadForward,        // If true, then read LSB -> MSB, else read MSB -> LSB
    int nBits,                // The number of bits representing this encoding
    int nTrits,               // The number of trits representing this encoding
    int nQuints               // The number of quints representing this encoding
) {
    // If we want more values than we have, then fail.
    if (nVals > dstSize) {
        return false;
    }

    ASTCBlock src = block;

    if (!bReadForward) {
        src.reverse();
        startBit = 128 - startBit;
        endBit = 128 - endBit;
    }

    while (nVals > 0) {

        if (nTrits > 0) {
            SkASSERT(0 == nQuints);

            int endBlockBit = startBit + 8 + 5*nBits;
            if (endBlockBit > endBit) {
                endBlockBit = endBit;
            }

            // Trit blocks are three values large.
            int trits[5];
            decode_trit_block(trits, nBits, read_astc_bits(src, startBit, endBlockBit));
            memcpy(dst, trits, SkMin32(nVals, 5)*sizeof(int));

            dst += 5;
            nVals -= 5;
            startBit = endBlockBit;

        } else if (nQuints > 0) {
            SkASSERT(0 == nTrits);

            int endBlockBit = startBit + 7 + 3*nBits;
            if (endBlockBit > endBit) {
                endBlockBit = endBit;
            }

            // Quint blocks are three values large
            int quints[3];
            decode_quint_block(quints, nBits, read_astc_bits(src, startBit, endBlockBit));
            memcpy(dst, quints, SkMin32(nVals, 3)*sizeof(int));

            dst += 3;
            nVals -= 3;
            startBit = endBlockBit;

        } else {
            // Just read the bits, but don't read more than we have...
            int endValBit = startBit + nBits;
            if (endValBit > endBit) {
                endValBit = endBit;
            }

            SkASSERT(endValBit - startBit < 31);
            *dst = static_cast<int>(read_astc_bits(src, startBit, endValBit));
            ++dst;
            --nVals;
            startBit = endValBit;
        }
    }

    return true;
}

// Helper function that unquantizes some (seemingly random) generated
// numbers... meant to match the ASTC hardware. This function is used
// to unquantize both colors (Table C.2.16) and weights (Table C.2.26)
static inline int unquantize_value(unsigned mask, int A, int B, int C, int D) {
    int T = D * C + B;
    T = T ^ A;
    T = (A & mask) | (T >> 2);
    SkASSERT(T < 256);
    return T;
}

// Helper function to replicate the bits in x that represents an oldPrec
// precision integer into a prec precision integer. For example:
//   255 == replicate_bits(7, 3, 8);
static inline int replicate_bits(int x, int oldPrec, int prec) {
    while (oldPrec < prec) {
        const int toShift = SkMin32(prec-oldPrec, oldPrec);
        x = (x << toShift) | (x >> (oldPrec - toShift));
        oldPrec += toShift;
    }

    // Make sure that no bits are set outside the desired precision.
    SkASSERT((-(1 << prec) & x) == 0);
    return x;
}

// Returns the unquantized value of a color that's represented only as
// a set of bits.
static inline int unquantize_bits_color(int val, int nBits) {
    return replicate_bits(val, nBits, 8);
}

// Returns the unquantized value of a color that's represented as a
// trit followed by nBits bits. This algorithm follows the sequence
// defined in section C.2.13 of the ASTC spec.
static inline int unquantize_trit_color(int val, int nBits) {
    SkASSERT(nBits > 0);
    SkASSERT(nBits < 7);

    const int D = (val >> nBits) & 0x3;
    SkASSERT(D < 3);

    const int A = -(val & 0x1) & 0x1FF;

    static const int Cvals[6] = { 204, 93, 44, 22, 11, 5 };
    const int C = Cvals[nBits - 1];

    int B = 0;
    const SkTBits<int> valBits(val);
    switch (nBits) {
        case 1:
            B = 0;
            break;

        case 2: {
            const int b = valBits[1];
            B = (b << 1) | (b << 2) | (b << 4) | (b << 8);
        }
        break;

        case 3: {
            const int cb = valBits(2, 1);
            B = cb | (cb << 2) | (cb << 7);
        }
        break;

        case 4: {
            const int dcb = valBits(3, 1);
            B = dcb | (dcb << 6);
        }
        break;

        case 5: {
            const int edcb = valBits(4, 1);
            B = (edcb << 5) | (edcb >> 2);
        }
        break;

        case 6: {
            const int fedcb = valBits(5, 1);
            B = (fedcb << 4) | (fedcb >> 4);
        }
        break;
    }

    return unquantize_value(0x80, A, B, C, D);
}

// Returns the unquantized value of a color that's represented as a
// quint followed by nBits bits. This algorithm follows the sequence
// defined in section C.2.13 of the ASTC spec.
static inline int unquantize_quint_color(int val, int nBits) {
    const int D = (val >> nBits) & 0x7;
    SkASSERT(D < 5);

    const int A = -(val & 0x1) & 0x1FF;

    static const int Cvals[5] = { 113, 54, 26, 13, 6 };
    SkASSERT(nBits > 0);
    SkASSERT(nBits < 6);

    const int C = Cvals[nBits - 1];

    int B = 0;
    const SkTBits<int> valBits(val);
    switch (nBits) {
        case 1:
            B = 0;
            break;

        case 2: {
            const int b = valBits[1];
            B = (b << 2) | (b << 3) | (b << 8);
        }
        break;

        case 3: {
            const int cb = valBits(2, 1);
            B = (cb >> 1) | (cb << 1) | (cb << 7);
        }
        break;

        case 4: {
            const int dcb = valBits(3, 1);
            B = (dcb >> 1) | (dcb << 6);
        }
        break;

        case 5: {
            const int edcb = valBits(4, 1);
            B = (edcb << 5) | (edcb >> 3);
        }
        break;
    }

    return unquantize_value(0x80, A, B, C, D);
}

// This algorithm takes a list of integers, stored in vals, and unquantizes them
// in place. This follows the algorithm laid out in section C.2.13 of the ASTC spec.
static void unquantize_colors(int *vals, int nVals, int nBits, int nTrits, int nQuints) {
    for (int i = 0; i < nVals; ++i) {
        if (nTrits > 0) {
            SkASSERT(nQuints == 0);
            vals[i] = unquantize_trit_color(vals[i], nBits);
        } else if (nQuints > 0) {
            SkASSERT(nTrits == 0);
            vals[i] = unquantize_quint_color(vals[i], nBits);
        } else {
            SkASSERT(nQuints == 0 && nTrits == 0);
            vals[i] = unquantize_bits_color(vals[i], nBits);
        }
    }
}

// Returns an interpolated value between c0 and c1 based on the weight. This
// follows the algorithm laid out in section C.2.19 of the ASTC spec.
static int interpolate_channel(int c0, int c1, int weight) {
    SkASSERT(0 <= c0 && c0 < 256);
    SkASSERT(0 <= c1 && c1 < 256);

    c0 = (c0 << 8) | c0;
    c1 = (c1 << 8) | c1;

    const int result = ((c0*(64 - weight) + c1*weight + 32) / 64) >> 8;

    if (result > 255) {
        return 255;
    }

    SkASSERT(result >= 0);
    return result;
}

// Returns an interpolated color between the two endpoints based on the weight.
static SkColor interpolate_endpoints(const SkColor endpoints[2], int weight) {
    return SkColorSetARGB(
        interpolate_channel(SkColorGetA(endpoints[0]), SkColorGetA(endpoints[1]), weight),
        interpolate_channel(SkColorGetR(endpoints[0]), SkColorGetR(endpoints[1]), weight),
        interpolate_channel(SkColorGetG(endpoints[0]), SkColorGetG(endpoints[1]), weight),
        interpolate_channel(SkColorGetB(endpoints[0]), SkColorGetB(endpoints[1]), weight));
}

// Returns an interpolated color between the two endpoints based on the weight.
// It uses separate weights for the channel depending on the value of the 'plane'
// variable. By default, all channels will use weight 0, and the value of plane
// means that weight1 will be used for:
// 0: red
// 1: green
// 2: blue
// 3: alpha
static SkColor interpolate_dual_endpoints(
    const SkColor endpoints[2], int weight0, int weight1, int plane) {
    int a = interpolate_channel(SkColorGetA(endpoints[0]), SkColorGetA(endpoints[1]), weight0);
    int r = interpolate_channel(SkColorGetR(endpoints[0]), SkColorGetR(endpoints[1]), weight0);
    int g = interpolate_channel(SkColorGetG(endpoints[0]), SkColorGetG(endpoints[1]), weight0);
    int b = interpolate_channel(SkColorGetB(endpoints[0]), SkColorGetB(endpoints[1]), weight0);

    switch (plane) {

        case 0:
            r = interpolate_channel(
                SkColorGetR(endpoints[0]), SkColorGetR(endpoints[1]), weight1);
            break;

        case 1:
            g = interpolate_channel(
                SkColorGetG(endpoints[0]), SkColorGetG(endpoints[1]), weight1);
            break;

        case 2:
            b = interpolate_channel(
                SkColorGetB(endpoints[0]), SkColorGetB(endpoints[1]), weight1);
            break;

        case 3:
            a = interpolate_channel(
                SkColorGetA(endpoints[0]), SkColorGetA(endpoints[1]), weight1);
            break;

        default:
            SkDEBUGFAIL("Plane should be 0-3");
            break;
    }

    return SkColorSetARGB(a, r, g, b);
}

// A struct of decoded values that we use to carry around information
// about the block. dimX and dimY are the dimension in texels of the block,
// for which there is only a limited subset of valid values:
//
// 4x4, 5x4, 5x5, 6x5, 6x6, 8x5, 8x6, 8x8, 10x5, 10x6, 10x8, 10x10, 12x10, 12x12

struct ASTCDecompressionData {
    ASTCDecompressionData(int dimX, int dimY) : fDimX(dimX), fDimY(dimY) { }
    const int   fDimX;      // the X dimension of the decompressed block
    const int   fDimY;      // the Y dimension of the decompressed block
    ASTCBlock   fBlock;     // the block data
    int         fBlockMode; // the block header that contains the block mode.

    bool fDualPlaneEnabled; // is this block compressing dual weight planes?
    int  fDualPlane;        // the independent plane in dual plane mode.

    bool fVoidExtent;       // is this block a single color?
    bool fError;            // does this block have an error encoding?

    int  fWeightDimX;       // the x dimension of the weight grid
    int  fWeightDimY;       // the y dimension of the weight grid

    int  fWeightBits;       // the number of bits used for each weight value
    int  fWeightTrits;      // the number of trits used for each weight value
    int  fWeightQuints;     // the number of quints used for each weight value

    int  fPartCount;        // the number of partitions in this block
    int  fPartIndex;        // the partition index: only relevant if fPartCount > 0

    // CEM values can be anything in the range 0-15, and each corresponds to a different
    // mode that represents the color data. We only support LDR modes.
    enum ColorEndpointMode {
        kLDR_Luminance_Direct_ColorEndpointMode          = 0,
        kLDR_Luminance_BaseOffset_ColorEndpointMode      = 1,
        kHDR_Luminance_LargeRange_ColorEndpointMode      = 2,
        kHDR_Luminance_SmallRange_ColorEndpointMode      = 3,
        kLDR_LuminanceAlpha_Direct_ColorEndpointMode     = 4,
        kLDR_LuminanceAlpha_BaseOffset_ColorEndpointMode = 5,
        kLDR_RGB_BaseScale_ColorEndpointMode             = 6,
        kHDR_RGB_BaseScale_ColorEndpointMode             = 7,
        kLDR_RGB_Direct_ColorEndpointMode                = 8,
        kLDR_RGB_BaseOffset_ColorEndpointMode            = 9,
        kLDR_RGB_BaseScaleWithAlpha_ColorEndpointMode    = 10,
        kHDR_RGB_ColorEndpointMode                       = 11,
        kLDR_RGBA_Direct_ColorEndpointMode               = 12,
        kLDR_RGBA_BaseOffset_ColorEndpointMode           = 13,
        kHDR_RGB_LDRAlpha_ColorEndpointMode              = 14,
        kHDR_RGB_HDRAlpha_ColorEndpointMode              = 15
    };
    static const int kMaxColorEndpointModes = 16;

    // the color endpoint modes for this block.
    static const int kMaxPartitions = 4;
    ColorEndpointMode fCEM[kMaxPartitions];

    int  fColorStartBit;    // The bit position of the first bit of the color data
    int  fColorEndBit;      // The bit position of the last *possible* bit of the color data

    // Returns the number of partitions for this block.
    int numPartitions() const {
        return fPartCount;
    }

    // Returns the total number of weight values that are stored in this block
    int numWeights() const {
        return fWeightDimX * fWeightDimY * (fDualPlaneEnabled ? 2 : 1);
    }

#ifdef SK_DEBUG
    // Returns the maximum value that any weight can take. We really only use
    // this function for debugging.
    int maxWeightValue() const {
        int maxVal = (1 << fWeightBits);
        if (fWeightTrits > 0) {
            SkASSERT(0 == fWeightQuints);
            maxVal *= 3;
        } else if (fWeightQuints > 0) {
            SkASSERT(0 == fWeightTrits);
            maxVal *= 5;
        }
        return maxVal - 1;
    }
#endif

    // The number of bits needed to represent the texel weight data. This
    // comes from the 'data size determination' section of the ASTC spec (C.2.22)
    int numWeightBits() const {
        const int nWeights = this->numWeights();
        return
            ((nWeights*8*fWeightTrits + 4) / 5) +
            ((nWeights*7*fWeightQuints + 2) / 3) +
            (nWeights*fWeightBits);
    }

    // Returns the number of color values stored in this block. The number of
    // values stored is directly a function of the color endpoint modes.
    int numColorValues() const {
        int numValues = 0;
        for (int i = 0; i < this->numPartitions(); ++i) {
            int cemInt = static_cast<int>(fCEM[i]);
            numValues += ((cemInt >> 2) + 1) * 2;
        }

        return numValues;
    }

    // Figures out the number of bits available for color values, and fills
    // in the maximum encoding that will fit the number of color values that
    // we need. Returns false on error. (See section C.2.22 of the spec)
    bool getColorValueEncoding(int *nBits, int *nTrits, int *nQuints) const {
        if (nullptr == nBits || nullptr == nTrits || nullptr == nQuints) {
            return false;
        }

        const int nColorVals = this->numColorValues();
        if (nColorVals <= 0) {
            return false;
        }

        const int colorBits = fColorEndBit - fColorStartBit;
        SkASSERT(colorBits > 0);

        // This is the minimum amount of accuracy required by the spec.
        if (colorBits < ((13 * nColorVals + 4) / 5)) {
            return false;
        }

        // Values can be represented as at most 8-bit values.
        // !SPEED! place this in a lookup table based on colorBits and nColorVals
        for (int i = 255; i > 0; --i) {
            int range = i + 1;
            int bits = 0, trits = 0, quints = 0;
            bool valid = false;
            if (SkIsPow2(range)) {
                bits = bits_for_range(range);
                valid = true;
            } else if ((range % 3) == 0 && SkIsPow2(range/3)) {
                trits = 1;
                bits = bits_for_range(range/3);
                valid = true;
            } else if ((range % 5) == 0 && SkIsPow2(range/5)) {
                quints = 1;
                bits = bits_for_range(range/5);
                valid = true;
            }

            if (valid) {
                const int actualColorBits =
                    ((nColorVals*8*trits + 4) / 5) +
                    ((nColorVals*7*quints + 2) / 3) +
                    (nColorVals*bits);
                if (actualColorBits <= colorBits) {
                    *nTrits = trits;
                    *nQuints = quints;
                    *nBits = bits;
                    return true;
                }
            }
        }

        return false;
    }

    // Converts the sequence of color values into endpoints. The algorithm here
    // corresponds to the values determined by section C.2.14 of the ASTC spec
    void colorEndpoints(SkColor endpoints[4][2], const int* colorValues) const {
        for (int i = 0; i < this->numPartitions(); ++i) {
            switch (fCEM[i]) {
                case kLDR_Luminance_Direct_ColorEndpointMode: {
                    const int* v = colorValues;
                    endpoints[i][0] = SkColorSetARGB(0xFF, v[0], v[0], v[0]);
                    endpoints[i][1] = SkColorSetARGB(0xFF, v[1], v[1], v[1]);

                    colorValues += 2;
                }
                break;

                case kLDR_Luminance_BaseOffset_ColorEndpointMode: {
                    const int* v = colorValues;
                    const int L0 = (v[0] >> 2) | (v[1] & 0xC0);
                    const int L1 = clamp_byte(L0 + (v[1] & 0x3F));

                    endpoints[i][0] = SkColorSetARGB(0xFF, L0, L0, L0);
                    endpoints[i][1] = SkColorSetARGB(0xFF, L1, L1, L1);

                    colorValues += 2;
                }
                break;

                case kLDR_LuminanceAlpha_Direct_ColorEndpointMode: {
                    const int* v = colorValues;
                    
                    endpoints[i][0] = SkColorSetARGB(v[2], v[0], v[0], v[0]);
                    endpoints[i][1] = SkColorSetARGB(v[3], v[1], v[1], v[1]);

                    colorValues += 4;
                }
                break;

                case kLDR_LuminanceAlpha_BaseOffset_ColorEndpointMode: {
                    int v0 = colorValues[0];
                    int v1 = colorValues[1];
                    int v2 = colorValues[2];
                    int v3 = colorValues[3];

                    bit_transfer_signed(&v1, &v0);
                    bit_transfer_signed(&v3, &v2);
                    
                    endpoints[i][0] = SkColorSetARGB(v2, v0, v0, v0);
                    endpoints[i][1] = SkColorSetARGB(
                        clamp_byte(v3+v2),
                        clamp_byte(v1+v0),
                        clamp_byte(v1+v0),
                        clamp_byte(v1+v0));

                    colorValues += 4;
                }
                break;

                case kLDR_RGB_BaseScale_ColorEndpointMode: {
                    decode_rgba_basescale(colorValues, endpoints[i], true);
                    colorValues += 4;
                }
                break;

                case kLDR_RGB_Direct_ColorEndpointMode: {
                    decode_rgba_direct(colorValues, endpoints[i], true);
                    colorValues += 6;
                }
                break;

                case kLDR_RGB_BaseOffset_ColorEndpointMode: {
                    decode_rgba_baseoffset(colorValues, endpoints[i], true);
                    colorValues += 6;
                }
                break;

                case kLDR_RGB_BaseScaleWithAlpha_ColorEndpointMode: {
                    decode_rgba_basescale(colorValues, endpoints[i], false);
                    colorValues += 6;
                }
                break;

                case kLDR_RGBA_Direct_ColorEndpointMode: {
                    decode_rgba_direct(colorValues, endpoints[i], false);
                    colorValues += 8;
                }
                break;

                case kLDR_RGBA_BaseOffset_ColorEndpointMode: {
                    decode_rgba_baseoffset(colorValues, endpoints[i], false);
                    colorValues += 8;
                }
                break;

                default:
                    SkDEBUGFAIL("HDR mode unsupported! This should be caught sooner.");
                    break;
            }
        }
    }

    // Follows the procedure from section C.2.17 of the ASTC specification
    int unquantizeWeight(int x) const {
        SkASSERT(x <= this->maxWeightValue());

        const int D = (x >> fWeightBits) & 0x7;
        const int A = -(x & 0x1) & 0x7F;

        SkTBits<int> xbits(x);

        int T = 0;
        if (fWeightTrits > 0) {
            SkASSERT(0 == fWeightQuints);
            switch (fWeightBits) {
                case 0: {
                    // x is a single trit
                    SkASSERT(x < 3);

                    static const int kUnquantizationTable[3] = { 0, 32, 63 };
                    T = kUnquantizationTable[x];
                }
                break;

                case 1: {
                    const int B = 0;
                    const int C = 50;
                    T = unquantize_value(0x20, A, B, C, D);
                }
                break;

                case 2: {
                    const int b = xbits[1];
                    const int B = b | (b << 2) | (b << 6);
                    const int C = 23;
                    T = unquantize_value(0x20, A, B, C, D);
                }
                break;

                case 3: {
                    const int cb = xbits(2, 1);
                    const int B = cb | (cb << 5);
                    const int C = 11;
                    T = unquantize_value(0x20, A, B, C, D);
                }
                break;

                default:
                    SkDEBUGFAIL("Too many bits for trit encoding");
                    break;
            }

        } else if (fWeightQuints > 0) {
            SkASSERT(0 == fWeightTrits);
            switch (fWeightBits) {
                case 0: {
                    // x is a single quint
                    SkASSERT(x < 5);

                    static const int kUnquantizationTable[5] = { 0, 16, 32, 47, 63 };
                    T = kUnquantizationTable[x];
                }
                break;

                case 1: {
                    const int B = 0;
                    const int C = 28;
                    T = unquantize_value(0x20, A, B, C, D);
                }
                break;

                case 2: {
                    const int b = xbits[1];
                    const int B = (b << 1) | (b << 6);
                    const int C = 13;
                    T = unquantize_value(0x20, A, B, C, D);
                }
                break;

                default:
                    SkDEBUGFAIL("Too many bits for quint encoding");
                    break;
            }
        } else {
            SkASSERT(0 == fWeightTrits);
            SkASSERT(0 == fWeightQuints);

            T = replicate_bits(x, fWeightBits, 6);
        }

        // This should bring the value within [0, 63]..
        SkASSERT(T <= 63);

        if (T > 32) {
            T += 1;
        }

        SkASSERT(T <= 64);

        return T;
    }

    // Returns the weight at the associated index. If the index is out of bounds, it
    // returns zero. It also chooses the weight appropriately based on the given dual
    // plane.
    int getWeight(const int* unquantizedWeights, int idx, bool dualPlane) const {
        const int maxIdx = (fDualPlaneEnabled ? 2 : 1) * fWeightDimX * fWeightDimY - 1;
        if (fDualPlaneEnabled) {
            const int effectiveIdx = 2*idx + (dualPlane ? 1 : 0);
            if (effectiveIdx > maxIdx) {
                return 0;
            }
            return unquantizedWeights[effectiveIdx];
        }

        SkASSERT(!dualPlane);

        if (idx > maxIdx) {
            return 0;
        } else {
            return unquantizedWeights[idx];
        }
    }

    // This computes the effective weight at location (s, t) of the block. This
    // weight is computed by sampling the texel weight grid (it's usually not 1-1), and
    // then applying a bilerp. The algorithm outlined here follows the algorithm
    // defined in section C.2.18 of the ASTC spec.
    int infillWeight(const int* unquantizedValues, int s, int t, bool dualPlane) const {
        const int Ds = (1024 + fDimX/2) / (fDimX - 1);
        const int Dt = (1024 + fDimY/2) / (fDimY - 1);

        const int cs = Ds * s;
        const int ct = Dt * t;

        const int gs = (cs*(fWeightDimX - 1) + 32) >> 6;
        const int gt = (ct*(fWeightDimY - 1) + 32) >> 6;

        const int js = gs >> 4;
        const int jt = gt >> 4;

        const int fs = gs & 0xF;
        const int ft = gt & 0xF;

        const int idx = js + jt*fWeightDimX;
        const int p00 = this->getWeight(unquantizedValues, idx, dualPlane);
        const int p01 = this->getWeight(unquantizedValues, idx + 1, dualPlane);
        const int p10 = this->getWeight(unquantizedValues, idx + fWeightDimX, dualPlane);
        const int p11 = this->getWeight(unquantizedValues, idx + fWeightDimX + 1, dualPlane);

        const int w11 = (fs*ft + 8) >> 4;
        const int w10 = ft - w11;
        const int w01 = fs - w11;
        const int w00 = 16 - fs - ft + w11;

        const int weight = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4;
        SkASSERT(weight <= 64);
        return weight;
    }

    // Unquantizes the decoded texel weights as described in section C.2.17 of
    // the ASTC specification. Additionally, it populates texelWeights with
    // the expanded weight grid, which is computed according to section C.2.18
    void texelWeights(int texelWeights[2][12][12], const int* texelValues) const {
        // Unquantized texel weights...
        int unquantizedValues[144*2]; // 12x12 blocks with dual plane decoding...
        SkASSERT(this->numWeights() <= 144*2);

        // Unquantize the weights and cache them
        for (int j = 0; j < this->numWeights(); ++j) {
            unquantizedValues[j] = this->unquantizeWeight(texelValues[j]);
        }

        // Do weight infill...
        for (int y = 0; y < fDimY; ++y) {
            for (int x = 0; x < fDimX; ++x) {
                texelWeights[0][x][y] = this->infillWeight(unquantizedValues, x, y, false);
                if (fDualPlaneEnabled) {
                    texelWeights[1][x][y] = this->infillWeight(unquantizedValues, x, y, true);
                }
            }
        }
    }

    // Returns the partition for the texel located at position (x, y).
    // Adapted from C.2.21 of the ASTC specification
    int getPartition(int x, int y) const {
        const int partitionCount = this->numPartitions();
        int seed = fPartIndex;
        if ((fDimX * fDimY) < 31) {
            x <<= 1;
            y <<= 1;
        }

        seed += (partitionCount - 1) * 1024;

        uint32_t p = seed;
        p ^= p >> 15;  p -= p << 17;  p += p << 7; p += p <<  4;
        p ^= p >>  5;  p += p << 16;  p ^= p >> 7; p ^= p >> 3;
        p ^= p <<  6;  p ^= p >> 17;

        uint32_t rnum = p;
        uint8_t seed1  =  rnum        & 0xF;
        uint8_t seed2  = (rnum >>  4) & 0xF;
        uint8_t seed3  = (rnum >>  8) & 0xF;
        uint8_t seed4  = (rnum >> 12) & 0xF;
        uint8_t seed5  = (rnum >> 16) & 0xF;
        uint8_t seed6  = (rnum >> 20) & 0xF;
        uint8_t seed7  = (rnum >> 24) & 0xF;
        uint8_t seed8  = (rnum >> 28) & 0xF;
        uint8_t seed9  = (rnum >> 18) & 0xF;
        uint8_t seed10 = (rnum >> 22) & 0xF;
        uint8_t seed11 = (rnum >> 26) & 0xF;
        uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF;

        seed1 *= seed1;     seed2 *= seed2;
        seed3 *= seed3;     seed4 *= seed4;
        seed5 *= seed5;     seed6 *= seed6;
        seed7 *= seed7;     seed8 *= seed8;
        seed9 *= seed9;     seed10 *= seed10;
        seed11 *= seed11;   seed12 *= seed12;

        int sh1, sh2, sh3;
        if (0 != (seed & 1)) {
            sh1 = (0 != (seed & 2))? 4 : 5;
            sh2 = (partitionCount == 3)? 6 : 5;
        } else {
            sh1 = (partitionCount==3)? 6 : 5;
            sh2 = (0 != (seed & 2))? 4 : 5;
        }
        sh3 = (0 != (seed & 0x10))? sh1 : sh2;

        seed1 >>= sh1; seed2  >>= sh2; seed3  >>= sh1; seed4  >>= sh2;
        seed5 >>= sh1; seed6  >>= sh2; seed7  >>= sh1; seed8  >>= sh2;
        seed9 >>= sh3; seed10 >>= sh3; seed11 >>= sh3; seed12 >>= sh3;

        const int z = 0;
        int a = seed1*x + seed2*y + seed11*z + (rnum >> 14);
        int b = seed3*x + seed4*y + seed12*z + (rnum >> 10);
        int c = seed5*x + seed6*y + seed9 *z + (rnum >>  6);
        int d = seed7*x + seed8*y + seed10*z + (rnum >>  2);

        a &= 0x3F;
        b &= 0x3F;
        c &= 0x3F;
        d &= 0x3F;

        if (partitionCount < 4) {
            d = 0;
        }

        if (partitionCount < 3) {
            c = 0;
        }

        if (a >= b && a >= c && a >= d) {
            return 0;
        } else if (b >= c && b >= d) {
            return 1;
        } else if (c >= d) {
            return 2;
        } else {
            return 3;
        }
    }

    // Performs the proper interpolation of the texel based on the
    // endpoints and weights.
    SkColor getTexel(const SkColor endpoints[4][2],
                     const int weights[2][12][12],
                     int x, int y) const {
        int part = 0;
        if (this->numPartitions() > 1) {
            part = this->getPartition(x, y);
        }

        SkColor result;
        if (fDualPlaneEnabled) {
            result = interpolate_dual_endpoints(
                endpoints[part], weights[0][x][y], weights[1][x][y], fDualPlane);
        } else {
            result = interpolate_endpoints(endpoints[part], weights[0][x][y]);
        }

#if 1
        // !FIXME! if we're writing directly to a bitmap, then we don't need
        // to swap the red and blue channels, but since we're usually being used
        // by the SkImageDecoder_astc module, the results are expected to be in RGBA.
        result = SkColorSetARGB(
            SkColorGetA(result), SkColorGetB(result), SkColorGetG(result), SkColorGetR(result));
#endif

        return result;
    }

    void decode() {
        // First decode the block mode.
        this->decodeBlockMode();

        // Now we can decode the partition information.
        fPartIndex = static_cast<int>(read_astc_bits(fBlock, 11, 23));
        fPartCount = (fPartIndex & 0x3) + 1;
        fPartIndex >>= 2;

        // This is illegal
        if (fDualPlaneEnabled && this->numPartitions() == 4) {
            fError = true;
            return;
        }

        // Based on the partition info, we can decode the color information.
        this->decodeColorData();
    }

    // Decodes the dual plane based on the given bit location. The final
    // location, if the dual plane is enabled, is also the end of our color data.
    // This function is only meant to be used from this->decodeColorData()
    void decodeDualPlane(int bitLoc) {
        if (fDualPlaneEnabled) {
            fDualPlane = static_cast<int>(read_astc_bits(fBlock, bitLoc - 2, bitLoc));
            fColorEndBit = bitLoc - 2;
        } else {
            fColorEndBit = bitLoc;
        }
    }

    // Decodes the color information based on the ASTC spec.
    void decodeColorData() {

        // By default, the last color bit is at the end of the texel weights
        const int lastWeight = 128 - this->numWeightBits();

        // If we have a dual plane then it will be at this location, too.
        int dualPlaneBitLoc = lastWeight;

        // If there's only one partition, then our job is (relatively) easy.
        if (this->numPartitions() == 1) {
            fCEM[0] = static_cast<ColorEndpointMode>(read_astc_bits(fBlock, 13, 17));
            fColorStartBit = 17;

            // Handle dual plane mode...
            this->decodeDualPlane(dualPlaneBitLoc);

            return;
        } 

        // If we have more than one partition, then we need to make
        // room for the partition index.
        fColorStartBit = 29;

        // Read the base CEM. If it's zero, then we have no additional
        // CEM data and the endpoints for each partition share the same CEM.
        const int baseCEM = static_cast<int>(read_astc_bits(fBlock, 23, 25));
        if (0 == baseCEM) {

            const ColorEndpointMode sameCEM =
                static_cast<ColorEndpointMode>(read_astc_bits(fBlock, 25, 29));

            for (int i = 0; i < kMaxPartitions; ++i) {
                fCEM[i] = sameCEM;
            }

            // Handle dual plane mode...
            this->decodeDualPlane(dualPlaneBitLoc);

            return;
        } 

        // Move the dual plane selector bits down based on how many
        // partitions the block contains.
        switch (this->numPartitions()) {
            case 2:
                dualPlaneBitLoc -= 2;
                break;

            case 3:
                dualPlaneBitLoc -= 5;
                break;

            case 4:
                dualPlaneBitLoc -= 8;
                break;

            default:
                SkDEBUGFAIL("Internal ASTC decoding error.");
                break;
        }

        // The rest of the CEM config will be between the dual plane bit selector
        // and the texel weight grid.
        const int lowCEM = static_cast<int>(read_astc_bits(fBlock, 23, 29));
        SkASSERT(lastWeight >= dualPlaneBitLoc);
        SkASSERT(lastWeight - dualPlaneBitLoc < 31);
        int fullCEM = static_cast<int>(read_astc_bits(fBlock, dualPlaneBitLoc, lastWeight));

        // Attach the config at the end of the weight grid to the CEM values
        // in the beginning of the block.
        fullCEM = (fullCEM << 6) | lowCEM;

        // Ignore the two least significant bits, since those are our baseCEM above.
        fullCEM = fullCEM >> 2;

        int C[kMaxPartitions]; // Next, decode C and M from the spec (Table C.2.12)
        for (int i = 0; i < this->numPartitions(); ++i) {
            C[i] = fullCEM & 1;
            fullCEM = fullCEM >> 1;
        }

        int M[kMaxPartitions];
        for (int i = 0; i < this->numPartitions(); ++i) {
            M[i] = fullCEM & 0x3;
            fullCEM = fullCEM >> 2;
        }

        // Construct our CEMs..
        SkASSERT(baseCEM > 0);
        for (int i = 0; i < this->numPartitions(); ++i) {
            int cem = (baseCEM - 1) * 4;
            cem += (0 == C[i])? 0 : 4;
            cem += M[i];

            SkASSERT(cem < 16);
            fCEM[i] = static_cast<ColorEndpointMode>(cem);
        }

        // Finally, if we have dual plane mode, then read the plane selector.
        this->decodeDualPlane(dualPlaneBitLoc);
    }

    // Decodes the block mode. This function determines whether or not we use
    // dual plane encoding, the size of the texel weight grid, and the number of
    // bits, trits and quints that are used to encode it. For more information, 
    // see section C.2.10 of the ASTC spec.
    //
    // For 2D blocks, the Block Mode field is laid out as follows:
    //
    // -------------------------------------------------------------------------
    // 10  9   8   7   6   5   4   3   2   1   0   Width Height Notes
    // -------------------------------------------------------------------------
    // D   H     B       A     R0  0   0   R2  R1  B+4   A+2
    // D   H     B       A     R0  0   1   R2  R1  B+8   A+2
    // D   H     B       A     R0  1   0   R2  R1  A+2   B+8
    // D   H   0   B     A     R0  1   1   R2  R1  A+2   B+6
    // D   H   1   B     A     R0  1   1   R2  R1  B+2   A+2
    // D   H   0   0     A     R0  R2  R1  0   0   12    A+2
    // D   H   0   1     A     R0  R2  R1  0   0   A+2   12
    // D   H   1   1   0   0   R0  R2  R1  0   0   6     10
    // D   H   1   1   0   1   R0  R2  R1  0   0   10    6
    //   B     1   0     A     R0  R2  R1  0   0   A+6   B+6   D=0, H=0
    // x   x   1   1   1   1   1   1   1   0   0   -     -     Void-extent
    // x   x   1   1   1   x   x   x   x   0   0   -     -     Reserved*
    // x   x   x   x   x   x   x   0   0   0   0   -     -     Reserved
    // -------------------------------------------------------------------------
    //
    // D - dual plane enabled
    // H, R - used to determine the number of bits/trits/quints in texel weight encoding
    //        R is a three bit value whose LSB is R0 and MSB is R1
    // Width, Height - dimensions of the texel weight grid (determined by A and B)

    void decodeBlockMode() {
        const int blockMode = static_cast<int>(read_astc_bits(fBlock, 0, 11));

        // Check for special void extent encoding
        fVoidExtent = (blockMode & 0x1FF) == 0x1FC;

        // Check for reserved block modes
        fError = ((blockMode & 0x1C3) == 0x1C0) || ((blockMode & 0xF) == 0);

        // Neither reserved nor void-extent, decode as usual
        // This code corresponds to table C.2.8 of the ASTC spec
        bool highPrecision = false;
        int R = 0;
        if ((blockMode & 0x3) == 0) {
            R = ((0xC & blockMode) >> 1) | ((0x10 & blockMode) >> 4);
            const int bitsSevenAndEight = (blockMode & 0x180) >> 7;
            SkASSERT(0 <= bitsSevenAndEight && bitsSevenAndEight < 4);

            const int A = (blockMode >> 5) & 0x3;
            const int B = (blockMode >> 9) & 0x3;

            fDualPlaneEnabled = (blockMode >> 10) & 0x1;
            highPrecision = (blockMode >> 9) & 0x1;

            switch (bitsSevenAndEight) {
                default:
                case 0:
                    fWeightDimX = 12;
                    fWeightDimY = A + 2;
                    break;

                case 1:
                    fWeightDimX = A + 2;
                    fWeightDimY = 12;
                    break;

                case 2:
                    fWeightDimX = A + 6;
                    fWeightDimY = B + 6;
                    fDualPlaneEnabled = false;
                    highPrecision = false;
                    break;

                case 3:
                    if (0 == A) {
                        fWeightDimX = 6;
                        fWeightDimY = 10;
                    } else {
                        fWeightDimX = 10;
                        fWeightDimY = 6;
                    }
                    break;
            }
        } else { // (blockMode & 0x3) != 0
            R = ((blockMode & 0x3) << 1) | ((blockMode & 0x10) >> 4);

            const int bitsTwoAndThree = (blockMode >> 2) & 0x3;
            SkASSERT(0 <= bitsTwoAndThree && bitsTwoAndThree < 4);

            const int A = (blockMode >> 5) & 0x3;
            const int B = (blockMode >> 7) & 0x3;

            fDualPlaneEnabled = (blockMode >> 10) & 0x1;
            highPrecision = (blockMode >> 9) & 0x1;

            switch (bitsTwoAndThree) {
                case 0:
                    fWeightDimX = B + 4;
                    fWeightDimY = A + 2;
                    break;
                case 1:
                    fWeightDimX = B + 8;
                    fWeightDimY = A + 2;
                    break;
                case 2:
                    fWeightDimX = A + 2;
                    fWeightDimY = B + 8;
                    break;
                case 3:
                    if ((B & 0x2) == 0) {
                        fWeightDimX = A + 2;
                        fWeightDimY = (B & 1) + 6;
                    } else {
                        fWeightDimX = (B & 1) + 2;
                        fWeightDimY = A + 2;
                    }
                    break;
            }
        }

        // We should have set the values of R and highPrecision
        // from decoding the block mode, these are used to determine
        // the proper dimensions of our weight grid.
        if ((R & 0x6) == 0) {
            fError = true;
        } else {
            static const int kBitAllocationTable[2][6][3] = {
                {
                    {  1, 0, 0 },
                    {  0, 1, 0 },
                    {  2, 0, 0 },
                    {  0, 0, 1 },
                    {  1, 1, 0 },
                    {  3, 0, 0 }
                },
                {
                    {  1, 0, 1 },
                    {  2, 1, 0 },
                    {  4, 0, 0 },
                    {  2, 0, 1 },
                    {  3, 1, 0 },
                    {  5, 0, 0 }
                }
            };

            fWeightBits = kBitAllocationTable[highPrecision][R - 2][0];
            fWeightTrits = kBitAllocationTable[highPrecision][R - 2][1];
            fWeightQuints = kBitAllocationTable[highPrecision][R - 2][2];
        }
    }
};

// Reads an ASTC block from the given pointer.
static inline void read_astc_block(ASTCDecompressionData *dst, const uint8_t* src) {
    const uint64_t* qword = reinterpret_cast<const uint64_t*>(src);
    dst->fBlock.fLow = SkEndian_SwapLE64(qword[0]);
    dst->fBlock.fHigh = SkEndian_SwapLE64(qword[1]);
    dst->decode();
}

// Take a known void-extent block, and write out the values as a constant color.
static void decompress_void_extent(uint8_t* dst, int dstRowBytes,
                                   const ASTCDecompressionData &data) {
    // The top 64 bits contain 4 16-bit RGBA values.
    int a = (static_cast<int>(read_astc_bits(data.fBlock, 112, 128)) + 255) >> 8;
    int b = (static_cast<int>(read_astc_bits(data.fBlock, 96, 112)) + 255) >> 8;
    int g = (static_cast<int>(read_astc_bits(data.fBlock, 80, 96)) + 255) >> 8;
    int r = (static_cast<int>(read_astc_bits(data.fBlock, 64, 80)) + 255) >> 8;

    write_constant_color(dst, data.fDimX, data.fDimY, dstRowBytes, SkColorSetARGB(a, r, g, b));
}

// Decompresses a single ASTC block. It's assumed that data.fDimX and data.fDimY are
// set and that the block has already been decoded (i.e. data.decode() has been called)
static void decompress_astc_block(uint8_t* dst, int dstRowBytes,
                                  const ASTCDecompressionData &data) {
    if (data.fError) {
        write_error_color(dst, data.fDimX, data.fDimY, dstRowBytes);
        return;
    }

    if (data.fVoidExtent) {
        decompress_void_extent(dst, dstRowBytes, data);
        return;
    }

    // According to the spec, any more than 64 values is illegal. (C.2.24)
    static const int kMaxTexelValues = 64;

    // Decode the texel weights.
    int texelValues[kMaxTexelValues];
    bool success = decode_integer_sequence(
        texelValues, kMaxTexelValues, data.numWeights(),
        // texel data goes to the end of the 128 bit block.
        data.fBlock, 128, 128 - data.numWeightBits(), false,
        data.fWeightBits, data.fWeightTrits, data.fWeightQuints);

    if (!success) {
        write_error_color(dst, data.fDimX, data.fDimY, dstRowBytes);
        return;
    }

    // Decode the color endpoints
    int colorBits, colorTrits, colorQuints;
    if (!data.getColorValueEncoding(&colorBits, &colorTrits, &colorQuints)) {
        write_error_color(dst, data.fDimX, data.fDimY, dstRowBytes);
        return;
    }

    // According to the spec, any more than 18 color values is illegal. (C.2.24)
    static const int kMaxColorValues = 18;

    int colorValues[kMaxColorValues];
    success = decode_integer_sequence(
        colorValues, kMaxColorValues, data.numColorValues(),
        data.fBlock, data.fColorStartBit, data.fColorEndBit, true,
        colorBits, colorTrits, colorQuints);

    if (!success) {
        write_error_color(dst, data.fDimX, data.fDimY, dstRowBytes);
        return;
    }

    // Unquantize the color values after they've been decoded.
    unquantize_colors(colorValues, data.numColorValues(), colorBits, colorTrits, colorQuints);

    // Decode the colors into the appropriate endpoints.
    SkColor endpoints[4][2];
    data.colorEndpoints(endpoints, colorValues);

    // Do texel infill and decode the texel values.
    int texelWeights[2][12][12];
    data.texelWeights(texelWeights, texelValues);

    // Write the texels by interpolating them based on the information
    // stored in the block.
    dst += data.fDimY * dstRowBytes;
    for (int y = 0; y < data.fDimY; ++y) {
        dst -= dstRowBytes;
        SkColor* colorPtr = reinterpret_cast<SkColor*>(dst);
        for (int x = 0; x < data.fDimX; ++x) {
            colorPtr[x] = data.getTexel(endpoints, texelWeights, x, y);
        }
    }
}

////////////////////////////////////////////////////////////////////////////////
//
// ASTC Comrpession Struct
//
////////////////////////////////////////////////////////////////////////////////

// This is the type passed as the CompressorType argument of the compressed
// blitter for the ASTC format. The static functions required to be in this
// struct are documented in SkTextureCompressor_Blitter.h
struct CompressorASTC {
    static inline void CompressA8Vertical(uint8_t* dst, const uint8_t* src) {
        compress_a8_astc_block<GetAlphaTranspose>(&dst, src, 12);
    }

    static inline void CompressA8Horizontal(uint8_t* dst, const uint8_t* src,
                                            int srcRowBytes) {
        compress_a8_astc_block<GetAlpha>(&dst, src, srcRowBytes);
    }

#if PEDANTIC_BLIT_RECT
    static inline void UpdateBlock(uint8_t* dst, const uint8_t* src, int srcRowBytes,
                                   const uint8_t* mask) {
        // TODO: krajcevski
        // This is kind of difficult for ASTC because the weight values are calculated
        // as an average of the actual weights. The best we can do is decompress the
        // weights and recalculate them based on the new texel values. This should
        // be "not too bad" since we know that anytime we hit this function, we're
        // compressing 12x12 block dimension alpha-only, and we know the layout
        // of the block
        SkFAIL("Implement me!");
    }
#endif
};

////////////////////////////////////////////////////////////////////////////////

namespace SkTextureCompressor {

bool CompressA8To12x12ASTC(uint8_t* dst, const uint8_t* src,
                           int width, int height, size_t rowBytes) {
    if (width < 0 || ((width % 12) != 0) || height < 0 || ((height % 12) != 0)) {
        return false;
    }

    uint8_t** dstPtr = &dst;
    for (int y = 0; y < height; y += 12) {
        for (int x = 0; x < width; x += 12) {
            compress_a8_astc_block<GetAlpha>(dstPtr, src + y*rowBytes + x, rowBytes);
        }
    }

    return true;
}

SkBlitter* CreateASTCBlitter(int width, int height, void* outputBuffer,
                             SkTBlitterAllocator* allocator) {
    if ((width % 12) != 0 || (height % 12) != 0) {
        return nullptr;
    }

    // Memset the output buffer to an encoding that decodes to zero. We must do this
    // in order to avoid having uninitialized values in the buffer if the blitter
    // decides not to write certain scanlines (and skip entire rows of blocks).
    // In the case of ASTC, if everything index is zero, then the interpolated value
    // will decode to zero provided we have the right header. We use the encoding
    // from recognizing all zero blocks from above.
    const int nBlocks = (width * height / 144);
    uint8_t *dst = reinterpret_cast<uint8_t *>(outputBuffer);
    for (int i = 0; i < nBlocks; ++i) {
        send_packing(&dst, SkTEndian_SwapLE64(0x0000000001FE000173ULL), 0);
    }

    return allocator->createT<
        SkTCompressedAlphaBlitter<12, 16, CompressorASTC>, int, int, void* >
        (width, height, outputBuffer);
}

void DecompressASTC(uint8_t* dst, int dstRowBytes, const uint8_t* src,
                    int width, int height, int blockDimX, int blockDimY) {
    // ASTC is encoded in what they call "raster order", so that the first
    // block is the bottom-left block in the image, and the first pixel
    // is the bottom-left pixel of the image
    dst += height * dstRowBytes;

    ASTCDecompressionData data(blockDimX, blockDimY);
    for (int y = 0; y < height; y += blockDimY) {
        dst -= blockDimY * dstRowBytes;
        SkColor *colorPtr = reinterpret_cast<SkColor*>(dst);
        for (int x = 0; x < width; x += blockDimX) {
            read_astc_block(&data, src);
            decompress_astc_block(reinterpret_cast<uint8_t*>(colorPtr + x), dstRowBytes, data);

            // ASTC encoded blocks are 16 bytes (128 bits) large.
            src += 16;
        }
    }
}

}  // SkTextureCompressor