1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkPatchUtils.h"
#include "SkColorPriv.h"
#include "SkGeometry.h"
/**
* Evaluator to sample the values of a cubic bezier using forward differences.
* Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only
* adding precalculated values.
* For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h
* would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first
* evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After
* obtaining this value (mh) we could just add this constant step to our first sampled point
* to compute the next one.
*
* For the cubic case the first difference gives as a result a quadratic polynomial to which we can
* apply again forward differences and get linear function to which we can apply again forward
* differences to get a constant difference. This is why we keep an array of size 4, the 0th
* position keeps the sampled value while the next ones keep the quadratic, linear and constant
* difference values.
*/
class FwDCubicEvaluator {
public:
FwDCubicEvaluator()
: fMax(0)
, fCurrent(0)
, fDivisions(0) {
memset(fPoints, 0, 4 * sizeof(SkPoint));
memset(fPoints, 0, 4 * sizeof(SkPoint));
memset(fPoints, 0, 4 * sizeof(SkPoint));
}
/**
* Receives the 4 control points of the cubic bezier.
*/
FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d) {
fPoints[0] = a;
fPoints[1] = b;
fPoints[2] = c;
fPoints[3] = d;
SkScalar cx[4], cy[4];
SkGetCubicCoeff(fPoints, cx, cy);
fCoefs[0].set(cx[0], cy[0]);
fCoefs[1].set(cx[1], cy[1]);
fCoefs[2].set(cx[2], cy[2]);
fCoefs[3].set(cx[3], cy[3]);
this->restart(1);
}
explicit FwDCubicEvaluator(const SkPoint points[4]) {
memcpy(fPoints, points, 4 * sizeof(SkPoint));
SkScalar cx[4], cy[4];
SkGetCubicCoeff(fPoints, cx, cy);
fCoefs[0].set(cx[0], cy[0]);
fCoefs[1].set(cx[1], cy[1]);
fCoefs[2].set(cx[2], cy[2]);
fCoefs[3].set(cx[3], cy[3]);
this->restart(1);
}
/**
* Restarts the forward differences evaluator to the first value of t = 0.
*/
void restart(int divisions) {
fDivisions = divisions;
SkScalar h = 1.f / fDivisions;
fCurrent = 0;
fMax = fDivisions + 1;
fFwDiff[0] = fCoefs[3];
SkScalar h2 = h * h;
SkScalar h3 = h2 * h;
fFwDiff[3].set(6.f * fCoefs[0].x() * h3, 6.f * fCoefs[0].y() * h3); //6ah^3
fFwDiff[2].set(fFwDiff[3].x() + 2.f * fCoefs[1].x() * h2, //6ah^3 + 2bh^2
fFwDiff[3].y() + 2.f * fCoefs[1].y() * h2);
fFwDiff[1].set(fCoefs[0].x() * h3 + fCoefs[1].x() * h2 + fCoefs[2].x() * h,//ah^3 + bh^2 +ch
fCoefs[0].y() * h3 + fCoefs[1].y() * h2 + fCoefs[2].y() * h);
}
/**
* Check if the evaluator is still within the range of 0<=t<=1
*/
bool done() const {
return fCurrent > fMax;
}
/**
* Call next to obtain the SkPoint sampled and move to the next one.
*/
SkPoint next() {
SkPoint point = fFwDiff[0];
fFwDiff[0] += fFwDiff[1];
fFwDiff[1] += fFwDiff[2];
fFwDiff[2] += fFwDiff[3];
fCurrent++;
return point;
}
const SkPoint* getCtrlPoints() const {
return fPoints;
}
private:
int fMax, fCurrent, fDivisions;
SkPoint fFwDiff[4], fCoefs[4], fPoints[4];
};
////////////////////////////////////////////////////////////////////////////////
// size in pixels of each partition per axis, adjust this knob
static const int kPartitionSize = 10;
/**
* Calculate the approximate arc length given a bezier curve's control points.
*/
static SkScalar approx_arc_length(SkPoint* points, int count) {
if (count < 2) {
return 0;
}
SkScalar arcLength = 0;
for (int i = 0; i < count - 1; i++) {
arcLength += SkPoint::Distance(points[i], points[i + 1]);
}
return arcLength;
}
static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01,
SkScalar c11) {
SkScalar a = c00 * (1.f - tx) + c10 * tx;
SkScalar b = c01 * (1.f - tx) + c11 * tx;
return a * (1.f - ty) + b * ty;
}
SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix* matrix) {
// Approximate length of each cubic.
SkPoint pts[kNumPtsCubic];
SkPatchUtils::getTopCubic(cubics, pts);
matrix->mapPoints(pts, kNumPtsCubic);
SkScalar topLength = approx_arc_length(pts, kNumPtsCubic);
SkPatchUtils::getBottomCubic(cubics, pts);
matrix->mapPoints(pts, kNumPtsCubic);
SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic);
SkPatchUtils::getLeftCubic(cubics, pts);
matrix->mapPoints(pts, kNumPtsCubic);
SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic);
SkPatchUtils::getRightCubic(cubics, pts);
matrix->mapPoints(pts, kNumPtsCubic);
SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic);
// Level of detail per axis, based on the larger side between top and bottom or left and right
int lodX = static_cast<int>(SkMaxScalar(topLength, bottomLength) / kPartitionSize);
int lodY = static_cast<int>(SkMaxScalar(leftLength, rightLength) / kPartitionSize);
return SkISize::Make(SkMax32(8, lodX), SkMax32(8, lodY));
}
void SkPatchUtils::getTopCubic(const SkPoint cubics[12], SkPoint points[4]) {
points[0] = cubics[kTopP0_CubicCtrlPts];
points[1] = cubics[kTopP1_CubicCtrlPts];
points[2] = cubics[kTopP2_CubicCtrlPts];
points[3] = cubics[kTopP3_CubicCtrlPts];
}
void SkPatchUtils::getBottomCubic(const SkPoint cubics[12], SkPoint points[4]) {
points[0] = cubics[kBottomP0_CubicCtrlPts];
points[1] = cubics[kBottomP1_CubicCtrlPts];
points[2] = cubics[kBottomP2_CubicCtrlPts];
points[3] = cubics[kBottomP3_CubicCtrlPts];
}
void SkPatchUtils::getLeftCubic(const SkPoint cubics[12], SkPoint points[4]) {
points[0] = cubics[kLeftP0_CubicCtrlPts];
points[1] = cubics[kLeftP1_CubicCtrlPts];
points[2] = cubics[kLeftP2_CubicCtrlPts];
points[3] = cubics[kLeftP3_CubicCtrlPts];
}
void SkPatchUtils::getRightCubic(const SkPoint cubics[12], SkPoint points[4]) {
points[0] = cubics[kRightP0_CubicCtrlPts];
points[1] = cubics[kRightP1_CubicCtrlPts];
points[2] = cubics[kRightP2_CubicCtrlPts];
points[3] = cubics[kRightP3_CubicCtrlPts];
}
bool SkPatchUtils::getVertexData(SkPatchUtils::VertexData* data, const SkPoint cubics[12],
const SkColor colors[4], const SkPoint texCoords[4], int lodX, int lodY) {
if (lodX < 1 || lodY < 1 || NULL == cubics || NULL == data) {
return false;
}
// check for overflow in multiplication
const int64_t lodX64 = (lodX + 1),
lodY64 = (lodY + 1),
mult64 = lodX64 * lodY64;
if (mult64 > SK_MaxS32) {
return false;
}
data->fVertexCount = SkToS32(mult64);
// it is recommended to generate draw calls of no more than 65536 indices, so we never generate
// more than 60000 indices. To accomplish that we resize the LOD and vertex count
if (data->fVertexCount > 10000 || lodX > 200 || lodY > 200) {
SkScalar weightX = static_cast<SkScalar>(lodX) / (lodX + lodY);
SkScalar weightY = static_cast<SkScalar>(lodY) / (lodX + lodY);
// 200 comes from the 100 * 2 which is the max value of vertices because of the limit of
// 60000 indices ( sqrt(60000 / 6) that comes from data->fIndexCount = lodX * lodY * 6)
lodX = static_cast<int>(weightX * 200);
lodY = static_cast<int>(weightY * 200);
data->fVertexCount = (lodX + 1) * (lodY + 1);
}
data->fIndexCount = lodX * lodY * 6;
data->fPoints = SkNEW_ARRAY(SkPoint, data->fVertexCount);
data->fIndices = SkNEW_ARRAY(uint16_t, data->fIndexCount);
// if colors is not null then create array for colors
SkPMColor colorsPM[kNumCorners];
if (colors) {
// premultiply colors to avoid color bleeding.
for (int i = 0; i < kNumCorners; i++) {
colorsPM[i] = SkPreMultiplyColor(colors[i]);
}
data->fColors = SkNEW_ARRAY(uint32_t, data->fVertexCount);
}
// if texture coordinates are not null then create array for them
if (texCoords) {
data->fTexCoords = SkNEW_ARRAY(SkPoint, data->fVertexCount);
}
SkPoint pts[kNumPtsCubic];
SkPatchUtils::getBottomCubic(cubics, pts);
FwDCubicEvaluator fBottom(pts);
SkPatchUtils::getTopCubic(cubics, pts);
FwDCubicEvaluator fTop(pts);
SkPatchUtils::getLeftCubic(cubics, pts);
FwDCubicEvaluator fLeft(pts);
SkPatchUtils::getRightCubic(cubics, pts);
FwDCubicEvaluator fRight(pts);
fBottom.restart(lodX);
fTop.restart(lodX);
SkScalar u = 0.0f;
int stride = lodY + 1;
for (int x = 0; x <= lodX; x++) {
SkPoint bottom = fBottom.next(), top = fTop.next();
fLeft.restart(lodY);
fRight.restart(lodY);
SkScalar v = 0.f;
for (int y = 0; y <= lodY; y++) {
int dataIndex = x * (lodY + 1) + y;
SkPoint left = fLeft.next(), right = fRight.next();
SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(),
(1.0f - v) * top.y() + v * bottom.y());
SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(),
(1.0f - u) * left.y() + u * right.y());
SkPoint s2 = SkPoint::Make(
(1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x()
+ u * fTop.getCtrlPoints()[3].x())
+ v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x()
+ u * fBottom.getCtrlPoints()[3].x()),
(1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y()
+ u * fTop.getCtrlPoints()[3].y())
+ v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y()
+ u * fBottom.getCtrlPoints()[3].y()));
data->fPoints[dataIndex] = s0 + s1 - s2;
if (colors) {
uint8_t a = uint8_t(bilerp(u, v,
SkScalar(SkColorGetA(colorsPM[kTopLeft_Corner])),
SkScalar(SkColorGetA(colorsPM[kTopRight_Corner])),
SkScalar(SkColorGetA(colorsPM[kBottomLeft_Corner])),
SkScalar(SkColorGetA(colorsPM[kBottomRight_Corner]))));
uint8_t r = uint8_t(bilerp(u, v,
SkScalar(SkColorGetR(colorsPM[kTopLeft_Corner])),
SkScalar(SkColorGetR(colorsPM[kTopRight_Corner])),
SkScalar(SkColorGetR(colorsPM[kBottomLeft_Corner])),
SkScalar(SkColorGetR(colorsPM[kBottomRight_Corner]))));
uint8_t g = uint8_t(bilerp(u, v,
SkScalar(SkColorGetG(colorsPM[kTopLeft_Corner])),
SkScalar(SkColorGetG(colorsPM[kTopRight_Corner])),
SkScalar(SkColorGetG(colorsPM[kBottomLeft_Corner])),
SkScalar(SkColorGetG(colorsPM[kBottomRight_Corner]))));
uint8_t b = uint8_t(bilerp(u, v,
SkScalar(SkColorGetB(colorsPM[kTopLeft_Corner])),
SkScalar(SkColorGetB(colorsPM[kTopRight_Corner])),
SkScalar(SkColorGetB(colorsPM[kBottomLeft_Corner])),
SkScalar(SkColorGetB(colorsPM[kBottomRight_Corner]))));
data->fColors[dataIndex] = SkPackARGB32(a,r,g,b);
}
if (texCoords) {
data->fTexCoords[dataIndex] = SkPoint::Make(
bilerp(u, v, texCoords[kTopLeft_Corner].x(),
texCoords[kTopRight_Corner].x(),
texCoords[kBottomLeft_Corner].x(),
texCoords[kBottomRight_Corner].x()),
bilerp(u, v, texCoords[kTopLeft_Corner].y(),
texCoords[kTopRight_Corner].y(),
texCoords[kBottomLeft_Corner].y(),
texCoords[kBottomRight_Corner].y()));
}
if(x < lodX && y < lodY) {
int i = 6 * (x * lodY + y);
data->fIndices[i] = x * stride + y;
data->fIndices[i + 1] = x * stride + 1 + y;
data->fIndices[i + 2] = (x + 1) * stride + 1 + y;
data->fIndices[i + 3] = data->fIndices[i];
data->fIndices[i + 4] = data->fIndices[i + 2];
data->fIndices[i + 5] = (x + 1) * stride + y;
}
v = SkScalarClampMax(v + 1.f / lodY, 1);
}
u = SkScalarClampMax(u + 1.f / lodX, 1);
}
return true;
}
|