1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkInsetConvexPolygon.h"
#include "SkTemplates.h"
struct InsetSegment {
SkPoint fP0;
SkPoint fP1;
};
// Computes perpDot for point compared to segment.
// A positive value means the point is to the left of the segment,
// negative is to the right, 0 is collinear.
static int compute_side(const SkPoint& s0, const SkPoint& s1, const SkPoint& p) {
SkVector v0 = s1 - s0;
SkVector v1 = p - s0;
SkScalar perpDot = v0.cross(v1);
if (!SkScalarNearlyZero(perpDot)) {
return ((perpDot > 0) ? 1 : -1);
}
return 0;
}
// returns 1 for ccw, -1 for cw and 0 if degenerate
static int get_winding(const SkPoint* polygonVerts, int polygonSize) {
SkPoint p0 = polygonVerts[0];
SkPoint p1 = polygonVerts[1];
for (int i = 2; i < polygonSize; ++i) {
SkPoint p2 = polygonVerts[i];
// determine if cw or ccw
int side = compute_side(p0, p1, p2);
if (0 != side) {
return ((side > 0) ? 1 : -1);
}
// if nearly collinear, treat as straight line and continue
p1 = p2;
}
return 0;
}
// Offset line segment p0-p1 'd0' and 'd1' units in the direction specified by 'side'
bool SkOffsetSegment(const SkPoint& p0, const SkPoint& p1, SkScalar d0, SkScalar d1,
int side, SkPoint* offset0, SkPoint* offset1) {
SkASSERT(side == -1 || side == 1);
SkVector perp = SkVector::Make(p0.fY - p1.fY, p1.fX - p0.fX);
if (SkScalarNearlyEqual(d0, d1)) {
// if distances are equal, can just outset by the perpendicular
perp.setLength(d0*side);
*offset0 = p0 + perp;
*offset1 = p1 + perp;
} else {
// Otherwise we need to compute the outer tangent.
// See: http://www.ambrsoft.com/TrigoCalc/Circles2/Circles2Tangent_.htm
if (d0 < d1) {
side = -side;
}
SkScalar dD = d0 - d1;
// if one circle is inside another, we can't compute an offset
if (dD*dD >= p0.distanceToSqd(p1)) {
return false;
}
SkPoint outerTangentIntersect = SkPoint::Make((p1.fX*d0 - p0.fX*d1) / dD,
(p1.fY*d0 - p0.fY*d1) / dD);
SkScalar d0sq = d0*d0;
SkVector dP = outerTangentIntersect - p0;
SkScalar dPlenSq = dP.lengthSqd();
SkScalar discrim = SkScalarSqrt(dPlenSq - d0sq);
offset0->fX = p0.fX + (d0sq*dP.fX - side*d0*dP.fY*discrim) / dPlenSq;
offset0->fY = p0.fY + (d0sq*dP.fY + side*d0*dP.fX*discrim) / dPlenSq;
SkScalar d1sq = d1*d1;
dP = outerTangentIntersect - p1;
dPlenSq = dP.lengthSqd();
discrim = SkScalarSqrt(dPlenSq - d1sq);
offset1->fX = p1.fX + (d1sq*dP.fX - side*d1*dP.fY*discrim) / dPlenSq;
offset1->fY = p1.fY + (d1sq*dP.fY + side*d1*dP.fX*discrim) / dPlenSq;
}
return true;
}
// Compute the intersection 'p' between segments s0 and s1, if any.
// 's' is the parametric value for the intersection along 's0' & 't' is the same for 's1'.
// Returns false if there is no intersection.
static bool compute_intersection(const InsetSegment& s0, const InsetSegment& s1,
SkPoint* p, SkScalar* s, SkScalar* t) {
SkVector v0 = s0.fP1 - s0.fP0;
SkVector v1 = s1.fP1 - s1.fP0;
SkScalar perpDot = v0.cross(v1);
if (SkScalarNearlyZero(perpDot)) {
// segments are parallel
// check if endpoints are touching
if (s0.fP1.equalsWithinTolerance(s1.fP0)) {
*p = s0.fP1;
*s = SK_Scalar1;
*t = 0;
return true;
}
if (s1.fP1.equalsWithinTolerance(s0.fP0)) {
*p = s1.fP1;
*s = 0;
*t = SK_Scalar1;
return true;
}
return false;
}
SkVector d = s1.fP0 - s0.fP0;
SkScalar localS = d.cross(v1) / perpDot;
if (localS < 0 || localS > SK_Scalar1) {
return false;
}
SkScalar localT = d.cross(v0) / perpDot;
if (localT < 0 || localT > SK_Scalar1) {
return false;
}
v0 *= localS;
*p = s0.fP0 + v0;
*s = localS;
*t = localT;
return true;
}
static bool is_convex(const SkTDArray<SkPoint>& poly) {
if (poly.count() <= 3) {
return true;
}
SkVector v0 = poly[0] - poly[poly.count() - 1];
SkVector v1 = poly[1] - poly[poly.count() - 1];
SkScalar winding = v0.cross(v1);
for (int i = 0; i < poly.count() - 1; ++i) {
int j = i + 1;
int k = (i + 2) % poly.count();
SkVector v0 = poly[j] - poly[i];
SkVector v1 = poly[k] - poly[i];
SkScalar perpDot = v0.cross(v1);
if (winding*perpDot < 0) {
return false;
}
}
return true;
}
// The objective here is to inset all of the edges by the given distance, and then
// remove any invalid inset edges by detecting right-hand turns. In a ccw polygon,
// we should only be making left-hand turns (for cw polygons, we use the winding
// parameter to reverse this). We detect this by checking whether the second intersection
// on an edge is closer to its tail than the first one.
//
// We might also have the case that there is no intersection between two neighboring inset edges.
// In this case, one edge will lie to the right of the other and should be discarded along with
// its previous intersection (if any).
//
// Note: the assumption is that inputPolygon is convex and has no coincident points.
//
bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
std::function<SkScalar(int index)> insetDistanceFunc,
SkTDArray<SkPoint>* insetPolygon) {
if (inputPolygonSize < 3) {
return false;
}
int winding = get_winding(inputPolygonVerts, inputPolygonSize);
if (0 == winding) {
return false;
}
// set up
struct EdgeData {
InsetSegment fInset;
SkPoint fIntersection;
SkScalar fTValue;
bool fValid;
};
SkAutoSTMalloc<64, EdgeData> edgeData(inputPolygonSize);
for (int i = 0; i < inputPolygonSize; ++i) {
int j = (i + 1) % inputPolygonSize;
int k = (i + 2) % inputPolygonSize;
// check for convexity just to be sure
if (compute_side(inputPolygonVerts[i], inputPolygonVerts[j],
inputPolygonVerts[k])*winding < 0) {
return false;
}
SkOffsetSegment(inputPolygonVerts[i], inputPolygonVerts[j],
insetDistanceFunc(i), insetDistanceFunc(j),
winding,
&edgeData[i].fInset.fP0, &edgeData[i].fInset.fP1);
edgeData[i].fIntersection = edgeData[i].fInset.fP0;
edgeData[i].fTValue = SK_ScalarMin;
edgeData[i].fValid = true;
}
int prevIndex = inputPolygonSize - 1;
int currIndex = 0;
int insetVertexCount = inputPolygonSize;
while (prevIndex != currIndex) {
if (!edgeData[prevIndex].fValid) {
prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
continue;
}
SkScalar s, t;
SkPoint intersection;
if (compute_intersection(edgeData[prevIndex].fInset, edgeData[currIndex].fInset,
&intersection, &s, &t)) {
// if new intersection is further back on previous inset from the prior intersection
if (s < edgeData[prevIndex].fTValue) {
// no point in considering this one again
edgeData[prevIndex].fValid = false;
--insetVertexCount;
// go back one segment
prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
// we've already considered this intersection, we're done
} else if (edgeData[currIndex].fTValue > SK_ScalarMin &&
intersection.equalsWithinTolerance(edgeData[currIndex].fIntersection,
1.0e-6f)) {
break;
} else {
// add intersection
edgeData[currIndex].fIntersection = intersection;
edgeData[currIndex].fTValue = t;
// go to next segment
prevIndex = currIndex;
currIndex = (currIndex + 1) % inputPolygonSize;
}
} else {
// if prev to right side of curr
int side = winding*compute_side(edgeData[currIndex].fInset.fP0,
edgeData[currIndex].fInset.fP1,
edgeData[prevIndex].fInset.fP1);
if (side < 0 && side == winding*compute_side(edgeData[currIndex].fInset.fP0,
edgeData[currIndex].fInset.fP1,
edgeData[prevIndex].fInset.fP0)) {
// no point in considering this one again
edgeData[prevIndex].fValid = false;
--insetVertexCount;
// go back one segment
prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
} else {
// move to next segment
edgeData[currIndex].fValid = false;
--insetVertexCount;
currIndex = (currIndex + 1) % inputPolygonSize;
}
}
}
// store all the valid intersections that aren't nearly coincident
// TODO: look at the main algorithm and see if we can detect these better
static constexpr SkScalar kCleanupTolerance = 0.01f;
insetPolygon->reset();
insetPolygon->setReserve(insetVertexCount);
currIndex = -1;
for (int i = 0; i < inputPolygonSize; ++i) {
if (edgeData[i].fValid && (currIndex == -1 ||
!edgeData[i].fIntersection.equalsWithinTolerance((*insetPolygon)[currIndex],
kCleanupTolerance))) {
*insetPolygon->push() = edgeData[i].fIntersection;
currIndex++;
}
}
// make sure the first and last points aren't coincident
if (currIndex >= 1 &&
(*insetPolygon)[0].equalsWithinTolerance((*insetPolygon)[currIndex],
kCleanupTolerance)) {
insetPolygon->pop();
}
return (insetPolygon->count() >= 3 && is_convex(*insetPolygon));
}
|