1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkFloatUtils_DEFINED
#define SkFloatUtils_DEFINED
#include "SkTypes.h"
#include <limits.h>
#include <float.h>
template <size_t size>
class SkTypeWithSize {
public:
// Prevents using SkTypeWithSize<N> with non-specialized N.
typedef void UInt;
};
template <>
class SkTypeWithSize<32> {
public:
typedef uint32_t UInt;
};
template <>
class SkTypeWithSize<64> {
public:
typedef uint64_t UInt;
};
template <typename RawType>
struct SkNumericLimits {
static const int digits = 0;
};
template <>
struct SkNumericLimits<double> {
static const int digits = DBL_MANT_DIG;
};
template <>
struct SkNumericLimits<float> {
static const int digits = FLT_MANT_DIG;
};
//See
//http://stackoverflow.com/questions/17333/most-effective-way-for-float-and-double-comparison/3423299#3423299
//http://code.google.com/p/googletest/source/browse/trunk/include/gtest/internal/gtest-internal.h
//http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
template <typename RawType, unsigned int ULPs>
class SkFloatingPoint {
public:
/** Bits is a unsigned integer the same size as the floating point number. */
typedef typename SkTypeWithSize<sizeof(RawType) * CHAR_BIT>::UInt Bits;
/** # of bits in a number. */
static const size_t kBitCount = CHAR_BIT * sizeof(RawType);
/** # of fraction bits in a number. */
static const size_t kFractionBitCount = SkNumericLimits<RawType>::digits - 1;
/** # of exponent bits in a number. */
static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
/** The mask for the sign bit. */
static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
/** The mask for the fraction bits. */
static const Bits kFractionBitMask =
~static_cast<Bits>(0) >> (kExponentBitCount + 1);
/** The mask for the exponent bits. */
static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
/** How many ULP's (Units in the Last Place) to tolerate when comparing. */
static const size_t kMaxUlps = ULPs;
/**
* Constructs a FloatingPoint from a raw floating-point number.
*
* On an Intel CPU, passing a non-normalized NAN (Not a Number)
* around may change its bits, although the new value is guaranteed
* to be also a NAN. Therefore, don't expect this constructor to
* preserve the bits in x when x is a NAN.
*/
explicit SkFloatingPoint(const RawType& x) { fU.value = x; }
/** Returns the exponent bits of this number. */
Bits exponent_bits() const { return kExponentBitMask & fU.bits; }
/** Returns the fraction bits of this number. */
Bits fraction_bits() const { return kFractionBitMask & fU.bits; }
/** Returns true iff this is NAN (not a number). */
bool is_nan() const {
// It's a NAN if both of the folloowing are true:
// * the exponent bits are all ones
// * the fraction bits are not all zero.
return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
}
/**
* Returns true iff this number is at most kMaxUlps ULP's away from ths.
* In particular, this function:
* - returns false if either number is (or both are) NAN.
* - treats really large numbers as almost equal to infinity.
* - thinks +0.0 and -0.0 are 0 DLP's apart.
*/
bool AlmostEquals(const SkFloatingPoint& rhs) const {
// Any comparison operation involving a NAN must return false.
if (is_nan() || rhs.is_nan()) return false;
const Bits dist = DistanceBetweenSignAndMagnitudeNumbers(fU.bits,
rhs.fU.bits);
//SkDEBUGF(("(%f, %f, %d) ", u_.value_, rhs.u_.value_, dist));
return dist <= kMaxUlps;
}
private:
/** The data type used to store the actual floating-point number. */
union FloatingPointUnion {
/** The raw floating-point number. */
RawType value;
/** The bits that represent the number. */
Bits bits;
};
/**
* Converts an integer from the sign-and-magnitude representation to
* the biased representation. More precisely, let N be 2 to the
* power of (kBitCount - 1), an integer x is represented by the
* unsigned number x + N.
*
* For instance,
*
* -N + 1 (the most negative number representable using
* sign-and-magnitude) is represented by 1;
* 0 is represented by N; and
* N - 1 (the biggest number representable using
* sign-and-magnitude) is represented by 2N - 1.
*
* Read http://en.wikipedia.org/wiki/Signed_number_representations
* for more details on signed number representations.
*/
static Bits SignAndMagnitudeToBiased(const Bits &sam) {
if (kSignBitMask & sam) {
// sam represents a negative number.
return ~sam + 1;
} else {
// sam represents a positive number.
return kSignBitMask | sam;
}
}
/**
* Given two numbers in the sign-and-magnitude representation,
* returns the distance between them as an unsigned number.
*/
static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
const Bits &sam2) {
const Bits biased1 = SignAndMagnitudeToBiased(sam1);
const Bits biased2 = SignAndMagnitudeToBiased(sam2);
return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
}
FloatingPointUnion fU;
};
#endif
|