1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkCurveMeasure.h"
#include "SkGeometry.h"
// for abs
#include <cmath>
#define UNIMPLEMENTED SkDEBUGF(("%s:%d unimplemented\n", __FILE__, __LINE__))
/// Used inside SkCurveMeasure::getTime's Newton's iteration
static inline SkPoint evaluate(const SkPoint pts[4], SkSegType segType,
SkScalar t) {
SkPoint pos;
switch (segType) {
case kQuad_SegType:
pos = SkEvalQuadAt(pts, t);
break;
case kLine_SegType:
pos = SkPoint::Make(SkScalarInterp(pts[0].x(), pts[1].x(), t),
SkScalarInterp(pts[0].y(), pts[1].y(), t));
break;
case kCubic_SegType:
SkEvalCubicAt(pts, t, &pos, nullptr, nullptr);
break;
case kConic_SegType: {
SkConic conic(pts, pts[3].x());
conic.evalAt(t, &pos);
}
break;
default:
UNIMPLEMENTED;
}
return pos;
}
/// Used inside SkCurveMeasure::getTime's Newton's iteration
static inline SkVector evaluateDerivative(const SkPoint pts[4],
SkSegType segType, SkScalar t) {
SkVector tan;
switch (segType) {
case kQuad_SegType:
tan = SkEvalQuadTangentAt(pts, t);
break;
case kLine_SegType:
tan = pts[1] - pts[0];
break;
case kCubic_SegType:
SkEvalCubicAt(pts, t, nullptr, &tan, nullptr);
break;
case kConic_SegType: {
SkConic conic(pts, pts[3].x());
conic.evalAt(t, nullptr, &tan);
}
break;
default:
UNIMPLEMENTED;
}
return tan;
}
/// Used in ArcLengthIntegrator::computeLength
static inline Sk8f evaluateDerivativeLength(const Sk8f& ts,
const Sk8f (&xCoeff)[3],
const Sk8f (&yCoeff)[3],
const SkSegType segType) {
Sk8f x;
Sk8f y;
switch (segType) {
case kQuad_SegType:
x = xCoeff[0]*ts + xCoeff[1];
y = yCoeff[0]*ts + yCoeff[1];
break;
case kCubic_SegType:
x = (xCoeff[0]*ts + xCoeff[1])*ts + xCoeff[2];
y = (yCoeff[0]*ts + yCoeff[1])*ts + yCoeff[2];
break;
case kConic_SegType:
UNIMPLEMENTED;
break;
default:
UNIMPLEMENTED;
}
x = x * x;
y = y * y;
return (x + y).sqrt();
}
ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType)
: fSegType(segType) {
switch (fSegType) {
case kQuad_SegType: {
float Ax = pts[0].x();
float Bx = pts[1].x();
float Cx = pts[2].x();
float Ay = pts[0].y();
float By = pts[1].y();
float Cy = pts[2].y();
// precompute coefficients for derivative
xCoeff[0] = Sk8f(2*(Ax - 2*Bx + Cx));
xCoeff[1] = Sk8f(2*(Bx - Ax));
yCoeff[0] = Sk8f(2*(Ay - 2*By + Cy));
yCoeff[1] = Sk8f(2*(By - Ay));
}
break;
case kCubic_SegType:
{
float Ax = pts[0].x();
float Bx = pts[1].x();
float Cx = pts[2].x();
float Dx = pts[3].x();
float Ay = pts[0].y();
float By = pts[1].y();
float Cy = pts[2].y();
float Dy = pts[3].y();
// precompute coefficients for derivative
xCoeff[0] = Sk8f(3*(-Ax + 3*(Bx - Cx) + Dx));
xCoeff[1] = Sk8f(6*(Ax - 2*Bx + Cx));
xCoeff[2] = Sk8f(3*(-Ax + Bx));
yCoeff[0] = Sk8f(3*(-Ay + 3*(By - Cy) + Dy));
yCoeff[1] = Sk8f(6*(Ay - 2*By + Cy));
yCoeff[2] = Sk8f(3*(-Ay + By));
}
break;
case kConic_SegType:
UNIMPLEMENTED;
break;
default:
UNIMPLEMENTED;
}
}
// We use Gaussian quadrature
// (https://en.wikipedia.org/wiki/Gaussian_quadrature)
// to approximate the arc length integral here, because it is amenable to SIMD.
SkScalar ArcLengthIntegrator::computeLength(SkScalar t) {
SkScalar length = 0.0f;
Sk8f lengths = evaluateDerivativeLength(absc*t, xCoeff, yCoeff, fSegType);
lengths = weights*lengths;
// is it faster or more accurate to sum and then multiply or vice versa?
lengths = lengths*(t*0.5f);
// Why does SkNx index with ints? does negative index mean something?
for (int i = 0; i < 8; i++) {
length += lengths[i];
}
return length;
}
SkCurveMeasure::SkCurveMeasure(const SkPoint* pts, SkSegType segType)
: fSegType(segType) {
switch (fSegType) {
case SkSegType::kQuad_SegType:
for (size_t i = 0; i < 3; i++) {
fPts[i] = pts[i];
}
break;
case SkSegType::kLine_SegType:
fPts[0] = pts[0];
fPts[1] = pts[1];
fLength = (fPts[1] - fPts[0]).length();
break;
case SkSegType::kCubic_SegType:
for (size_t i = 0; i < 4; i++) {
fPts[i] = pts[i];
}
break;
case SkSegType::kConic_SegType:
for (size_t i = 0; i < 4; i++) {
fPts[i] = pts[i];
}
break;
default:
UNIMPLEMENTED;
break;
}
if (kLine_SegType != segType) {
fIntegrator = ArcLengthIntegrator(fPts, fSegType);
}
}
SkScalar SkCurveMeasure::getLength() {
if (-1.0f == fLength) {
fLength = fIntegrator.computeLength(1.0f);
}
return fLength;
}
// Given an arc length targetLength, we want to determine what t
// gives us the corresponding arc length along the curve.
// We do this by letting the arc length integral := f(t) and
// solving for the root of the equation f(t) - targetLength = 0
// using Newton's method and lerp-bisection.
// The computationally expensive parts are the integral approximation
// at each step, and computing the derivative of the arc length integral,
// which is equal to the length of the tangent (so we have to do a sqrt).
SkScalar SkCurveMeasure::getTime(SkScalar targetLength) {
if (targetLength <= 0.0f) {
return 0.0f;
}
SkScalar currentLength = getLength();
if (targetLength > currentLength || (SkScalarNearlyEqual(targetLength, currentLength))) {
return 1.0f;
}
if (kLine_SegType == fSegType) {
return targetLength / currentLength;
}
// initial estimate of t is percentage of total length
SkScalar currentT = targetLength / currentLength;
SkScalar prevT = -1.0f;
SkScalar newT;
SkScalar minT = 0.0f;
SkScalar maxT = 1.0f;
int iterations = 0;
while (iterations < kNewtonIters + kBisectIters) {
currentLength = fIntegrator.computeLength(currentT);
SkScalar lengthDiff = currentLength - targetLength;
// Update root bounds.
// If lengthDiff is positive, we have overshot the target, so
// we know the current t is an upper bound, and similarly
// for the lower bound.
if (lengthDiff > 0.0f) {
if (currentT < maxT) {
maxT = currentT;
}
} else {
if (currentT > minT) {
minT = currentT;
}
}
// We have a tolerance on both the absolute value of the difference and
// on the t value
// because we may not have enough precision in the t to get close enough
// in the length.
if ((std::abs(lengthDiff) < kTolerance) ||
(std::abs(prevT - currentT) < kTolerance)) {
break;
}
prevT = currentT;
if (iterations < kNewtonIters) {
// This is just newton's formula.
SkScalar dt = evaluateDerivative(fPts, fSegType, currentT).length();
newT = currentT - (lengthDiff / dt);
// If newT is out of bounds, bisect inside newton.
if ((newT < 0.0f) || (newT > 1.0f)) {
newT = (minT + maxT) * 0.5f;
}
} else if (iterations < kNewtonIters + kBisectIters) {
if (lengthDiff > 0.0f) {
maxT = currentT;
} else {
minT = currentT;
}
// TODO(hstern) do a lerp here instead of a bisection
newT = (minT + maxT) * 0.5f;
} else {
SkDEBUGF(("%.7f %.7f didn't get close enough after bisection.\n",
currentT, currentLength));
break;
}
currentT = newT;
SkASSERT(minT <= maxT);
iterations++;
}
// debug. is there an SKDEBUG or something for ifdefs?
fIters = iterations;
return currentT;
}
void SkCurveMeasure::getPosTanTime(SkScalar targetLength, SkPoint* pos,
SkVector* tan, SkScalar* time) {
SkScalar t = getTime(targetLength);
if (time) {
*time = t;
}
if (pos) {
*pos = evaluate(fPts, fSegType, t);
}
if (tan) {
*tan = evaluateDerivative(fPts, fSegType, t);
}
}
|