aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/sksl/ir/SkSLConstructor.h
blob: 145e117453755c9f2da06169680742058f3f32ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/*
 * Copyright 2016 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SKSL_CONSTRUCTOR
#define SKSL_CONSTRUCTOR

#include "SkSLExpression.h"
#include "SkSLFloatLiteral.h"
#include "SkSLIntLiteral.h"
#include "SkSLIRGenerator.h"

namespace SkSL {

/**
 * Represents the construction of a compound type, such as "float2(x, y)".
 *
 * Vector constructors will always consist of either exactly 1 scalar, or a collection of vectors
 * and scalars totalling exactly the right number of scalar components.
 *
 * Matrix constructors will always consist of either exactly 1 scalar, exactly 1 matrix, or a
 * collection of vectors and scalars totalling exactly the right number of scalar components.
 */
struct Constructor : public Expression {
    Constructor(int offset, const Type& type, std::vector<std::unique_ptr<Expression>> arguments)
    : INHERITED(offset, kConstructor_Kind, type)
    , fArguments(std::move(arguments)) {}

    std::unique_ptr<Expression> constantPropagate(const IRGenerator& irGenerator,
                                                  const DefinitionMap& definitions) override {
        if (fArguments.size() == 1 && fArguments[0]->fKind == Expression::kIntLiteral_Kind) {
            if (fType == *irGenerator.fContext.fFloat_Type ||
                fType == *irGenerator.fContext.fHalf_Type) {
                // promote float(1) to 1.0
                int64_t intValue = ((IntLiteral&) *fArguments[0]).fValue;
                return std::unique_ptr<Expression>(new FloatLiteral(irGenerator.fContext,
                                                                    fOffset,
                                                                    intValue));
            } else if (fType == *irGenerator.fContext.fUInt_Type ||
                       fType == *irGenerator.fContext.fUShort_Type) {
                // promote uint(1) to 1u
                int64_t intValue = ((IntLiteral&) *fArguments[0]).fValue;
                return std::unique_ptr<Expression>(new IntLiteral(fOffset,
                                                                  intValue,
                                                                  &fType));
            }
        }
        return nullptr;
    }

    bool hasSideEffects() const override {
        for (const auto& arg : fArguments) {
            if (arg->hasSideEffects()) {
                return true;
            }
        }
        return false;
    }

    std::unique_ptr<Expression> clone() const override {
        std::vector<std::unique_ptr<Expression>> cloned;
        for (const auto& arg : fArguments) {
            cloned.push_back(arg->clone());
        }
        return std::unique_ptr<Expression>(new Constructor(fOffset, fType, std::move(cloned)));
    }

    String description() const override {
        String result = fType.description() + "(";
        String separator;
        for (size_t i = 0; i < fArguments.size(); i++) {
            result += separator;
            result += fArguments[i]->description();
            separator = ", ";
        }
        result += ")";
        return result;
    }

    bool isConstant() const override {
        for (size_t i = 0; i < fArguments.size(); i++) {
            if (!fArguments[i]->isConstant()) {
                return false;
            }
        }
        return true;
    }

    bool compareConstant(const Context& context, const Expression& other) const override {
        SkASSERT(other.fKind == Expression::kConstructor_Kind && other.fType == fType);
        Constructor& c = (Constructor&) other;
        if (c.fType.kind() == Type::kVector_Kind) {
            for (int i = 0; i < fType.columns(); i++) {
                if (!this->getVecComponent(i).compareConstant(context, c.getVecComponent(i))) {
                    return false;
                }
            }
            return true;
        }
        // shouldn't be possible to have a constant constructor that isn't a vector or matrix;
        // a constant scalar constructor should have been collapsed down to the appropriate
        // literal
        SkASSERT(fType.kind() == Type::kMatrix_Kind);
        const FloatLiteral fzero(context, -1, 0);
        const IntLiteral izero(context, -1, 0);
        const Expression* zero;
        if (fType.componentType() == *context.fFloat_Type) {
            zero = &fzero;
        } else {
            SkASSERT(fType.componentType() == *context.fInt_Type);
            zero = &izero;
        }
        for (int col = 0; col < fType.columns(); col++) {
            for (int row = 0; row < fType.rows(); row++) {
                const Expression* component1 = getMatComponent(col, row);
                const Expression* component2 = c.getMatComponent(col, row);
                if (!(component1 ? component1 : zero)->compareConstant(
                                                                context,
                                                                component2 ? *component2 : *zero)) {
                    return false;
                }
            }
        }
        return true;
    }

    const Expression& getVecComponent(int index) const {
        SkASSERT(fType.kind() == Type::kVector_Kind);
        if (fArguments.size() == 1 && fArguments[0]->fType.kind() == Type::kScalar_Kind) {
            return *fArguments[0];
        }
        int current = 0;
        for (const auto& arg : fArguments) {
            SkASSERT(current <= index);
            if (arg->fType.kind() == Type::kScalar_Kind) {
                if (index == current) {
                    return *arg;
                }
                current++;
            } else {
                SkASSERT(arg->fType.kind() == Type::kVector_Kind);
                SkASSERT(arg->fKind == Expression::kConstructor_Kind);
                if (current + arg->fType.columns() > index) {
                    return ((const Constructor&) *arg).getVecComponent(index - current);
                }
                current += arg->fType.columns();
            }
        }
        ABORT("failed to find vector component %d in %s\n", index, description().c_str());
    }

    double getFVecComponent(int index) const {
        return this->getVecComponent(index).getConstantFloat();
    }

    int64_t getIVecComponent(int index) const {
        return this->getVecComponent(index).getConstantInt();
    }

    // null return should be interpreted as zero
    const Expression* getMatComponent(int col, int row) const {
        SkASSERT(this->isConstant());
        SkASSERT(fType.kind() == Type::kMatrix_Kind);
        SkASSERT(col < fType.columns() && row < fType.rows());
        if (fArguments.size() == 1) {
            if (fArguments[0]->fType.kind() == Type::kScalar_Kind) {
                // single scalar argument, so matrix is of the form:
                // x 0 0
                // 0 x 0
                // 0 0 x
                // return x if col == row
                return col == row ? fArguments[0].get() : nullptr;
            }
            if (fArguments[0]->fType.kind() == Type::kMatrix_Kind) {
                SkASSERT(fArguments[0]->fKind == Expression::kConstructor_Kind);
                // single matrix argument. make sure we're within the argument's bounds.
                const Type& argType = ((Constructor&) *fArguments[0]).fType;
                if (col < argType.columns() && row < argType.rows()) {
                    // within bounds, defer to argument
                    return ((Constructor&) *fArguments[0]).getMatComponent(col, row);
                }
                // out of bounds, return 0
                return nullptr;
            }
        }
        int currentIndex = 0;
        int targetIndex = col * fType.rows() + row;
        for (const auto& arg : fArguments) {
            SkASSERT(targetIndex >= currentIndex);
            SkASSERT(arg->fType.rows() == 1);
            if (currentIndex + arg->fType.columns() > targetIndex) {
                if (arg->fType.columns() == 1) {
                    return arg.get();
                } else {
                    SkASSERT(arg->fType.kind() == Type::kVector_Kind);
                    SkASSERT(arg->fKind == Expression::kConstructor_Kind);
                    return &((Constructor&) *arg).getVecComponent(targetIndex - currentIndex);
                }
            }
            currentIndex += arg->fType.columns();
        }
        ABORT("can't happen, matrix component out of bounds");
    }

    std::vector<std::unique_ptr<Expression>> fArguments;

    typedef Expression INHERITED;
};

} // namespace

#endif