1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTwoPointConicalGradient.h"
#include "SkRasterPipeline.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "../../jumper/SkJumper.h"
sk_sp<SkShader> SkTwoPointConicalGradient::Create(const SkPoint& c0, SkScalar r0,
const SkPoint& c1, SkScalar r1,
const Descriptor& desc) {
SkMatrix gradientMatrix;
Type gradientType;
if (SkScalarNearlyZero((c0 - c1).length())) {
// Concentric case: we can pretend we're radial (with a tiny twist).
const SkScalar scale = 1.0f / SkTMax(r0, r1);
gradientMatrix = SkMatrix::MakeTrans(-c1.x(), -c1.y());
gradientMatrix.postScale(scale, scale);
gradientType = Type::kRadial;
} else {
const SkPoint centers[2] = { c0 , c1 };
const SkPoint unitvec[2] = { {0, 0}, {1, 0} };
if (!gradientMatrix.setPolyToPoly(centers, unitvec, 2)) {
// Degenerate case.
return nullptr;
}
// General two-point case.
gradientType = Type::kTwoPoint;
}
return sk_sp<SkShader>(new SkTwoPointConicalGradient(c0, r0, c1, r1, desc,
gradientType, gradientMatrix));
}
SkTwoPointConicalGradient::SkTwoPointConicalGradient(
const SkPoint& start, SkScalar startRadius,
const SkPoint& end, SkScalar endRadius,
const Descriptor& desc, Type type, const SkMatrix& gradientMatrix)
: SkGradientShaderBase(desc, gradientMatrix)
, fCenter1(start)
, fCenter2(end)
, fRadius1(startRadius)
, fRadius2(endRadius)
, fType(type)
{
// this is degenerate, and should be caught by our caller
SkASSERT(fCenter1 != fCenter2 || fRadius1 != fRadius2);
}
bool SkTwoPointConicalGradient::isOpaque() const {
// Because areas outside the cone are left untouched, we cannot treat the
// shader as opaque even if the gradient itself is opaque.
// TODO(junov): Compute whether the cone fills the plane crbug.com/222380
return false;
}
// Returns the original non-sorted version of the gradient
SkShader::GradientType SkTwoPointConicalGradient::asAGradient(GradientInfo* info) const {
if (info) {
commonAsAGradient(info);
info->fPoint[0] = fCenter1;
info->fPoint[1] = fCenter2;
info->fRadius[0] = fRadius1;
info->fRadius[1] = fRadius2;
}
return kConical_GradientType;
}
sk_sp<SkFlattenable> SkTwoPointConicalGradient::CreateProc(SkReadBuffer& buffer) {
DescriptorScope desc;
if (!desc.unflatten(buffer)) {
return nullptr;
}
SkPoint c1 = buffer.readPoint();
SkPoint c2 = buffer.readPoint();
SkScalar r1 = buffer.readScalar();
SkScalar r2 = buffer.readScalar();
if (buffer.isVersionLT(SkReadBuffer::k2PtConicalNoFlip_Version) && buffer.readBool()) {
// legacy flipped gradient
SkTSwap(c1, c2);
SkTSwap(r1, r2);
SkColor4f* colors = desc.mutableColors();
SkScalar* pos = desc.mutablePos();
const int last = desc.fCount - 1;
const int half = desc.fCount >> 1;
for (int i = 0; i < half; ++i) {
SkTSwap(colors[i], colors[last - i]);
if (pos) {
SkScalar tmp = pos[i];
pos[i] = SK_Scalar1 - pos[last - i];
pos[last - i] = SK_Scalar1 - tmp;
}
}
if (pos) {
if (desc.fCount & 1) {
pos[half] = SK_Scalar1 - pos[half];
}
}
}
return SkGradientShader::MakeTwoPointConical(c1, r1, c2, r2, desc.fColors,
std::move(desc.fColorSpace), desc.fPos,
desc.fCount, desc.fTileMode, desc.fGradFlags,
desc.fLocalMatrix);
}
void SkTwoPointConicalGradient::flatten(SkWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writePoint(fCenter1);
buffer.writePoint(fCenter2);
buffer.writeScalar(fRadius1);
buffer.writeScalar(fRadius2);
}
#if SK_SUPPORT_GPU
#include "SkGr.h"
#include "SkTwoPointConicalGradient_gpu.h"
std::unique_ptr<GrFragmentProcessor> SkTwoPointConicalGradient::asFragmentProcessor(
const AsFPArgs& args) const {
SkASSERT(args.fContext);
return Gr2PtConicalGradientEffect::Make(
GrGradientEffect::CreateArgs(args.fContext, this, args.fLocalMatrix, fTileMode,
args.fDstColorSpaceInfo->colorSpace()));
}
#endif
sk_sp<SkShader> SkTwoPointConicalGradient::onMakeColorSpace(SkColorSpaceXformer* xformer) const {
const AutoXformColors xformedColors(*this, xformer);
return SkGradientShader::MakeTwoPointConical(fCenter1, fRadius1, fCenter2, fRadius2,
xformedColors.fColors.get(), fOrigPos, fColorCount,
fTileMode, fGradFlags, &this->getLocalMatrix());
}
#ifndef SK_IGNORE_TO_STRING
void SkTwoPointConicalGradient::toString(SkString* str) const {
str->append("SkTwoPointConicalGradient: (");
str->append("center1: (");
str->appendScalar(fCenter1.fX);
str->append(", ");
str->appendScalar(fCenter1.fY);
str->append(") radius1: ");
str->appendScalar(fRadius1);
str->append(" ");
str->append("center2: (");
str->appendScalar(fCenter2.fX);
str->append(", ");
str->appendScalar(fCenter2.fY);
str->append(") radius2: ");
str->appendScalar(fRadius2);
str->append(" ");
this->INHERITED::toString(str);
str->append(")");
}
#endif
void SkTwoPointConicalGradient::appendGradientStages(SkArenaAlloc* alloc, SkRasterPipeline* p,
SkRasterPipeline* postPipeline) const {
const auto dRadius = fRadius2 - fRadius1;
if (fType == Type::kRadial) {
p->append(SkRasterPipeline::xy_to_radius);
// Tiny twist: radial computes a t for [0, r2], but we want a t for [r1, r2].
auto scale = SkTMax(fRadius1, fRadius2) / dRadius;
auto bias = -fRadius1 / dRadius;
p->append_matrix(alloc, SkMatrix::Concat(SkMatrix::MakeTrans(bias, 0),
SkMatrix::MakeScale(scale, 1)));
return;
}
const auto dCenter = (fCenter1 - fCenter2).length();
// Since we've squashed the centers into a unit vector, we must also scale
// all the coefficient variables by (1 / dCenter).
const auto coeffA = 1 - dRadius * dRadius / (dCenter * dCenter);
auto* ctx = alloc->make<SkJumper_2PtConicalCtx>();
ctx->fCoeffA = coeffA;
ctx->fInvCoeffA = 1 / coeffA;
ctx->fR0 = fRadius1 / dCenter;
ctx->fDR = dRadius / dCenter;
// Is the solver guaranteed to not produce degenerates?
bool isWellBehaved = true;
if (SkScalarNearlyZero(coeffA)) {
// The focal point is on the edge of the end circle.
p->append(SkRasterPipeline::xy_to_2pt_conical_linear, ctx);
isWellBehaved = false;
} else {
isWellBehaved = SkScalarAbs(dRadius) >= dCenter;
bool isFlipped = isWellBehaved && dRadius < 0;
// We want the larger root, per spec:
// "For all values of ω where r(ω) > 0, starting with the value of ω nearest
// to positive infinity and ending with the value of ω nearest to negative
// infinity, draw the circumference of the circle with radius r(ω) at position
// (x(ω), y(ω)), with the color at ω, but only painting on the parts of the
// bitmap that have not yet been painted on by earlier circles in this step for
// this rendering of the gradient."
// (https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-createradialgradient)
//
// ... except when the gradient is flipped.
p->append(isFlipped ? SkRasterPipeline::xy_to_2pt_conical_quadratic_min
: SkRasterPipeline::xy_to_2pt_conical_quadratic_max, ctx);
}
if (!isWellBehaved) {
p->append(SkRasterPipeline::mask_2pt_conical_degenerates, ctx);
postPipeline->append(SkRasterPipeline::apply_vector_mask, &ctx->fMask);
}
}
|