1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Sk4fLinearGradient.h"
#include "SkColorSpaceXformer.h"
#include "SkLinearGradient.h"
#include "SkRefCnt.h"
static const float kInv255Float = 1.0f / 255;
static inline int repeat_8bits(int x) {
return x & 0xFF;
}
static inline int mirror_8bits(int x) {
if (x & 256) {
x = ~x;
}
return x & 255;
}
static SkMatrix pts_to_unit_matrix(const SkPoint pts[2]) {
SkVector vec = pts[1] - pts[0];
SkScalar mag = vec.length();
SkScalar inv = mag ? SkScalarInvert(mag) : 0;
vec.scale(inv);
SkMatrix matrix;
matrix.setSinCos(-vec.fY, vec.fX, pts[0].fX, pts[0].fY);
matrix.postTranslate(-pts[0].fX, -pts[0].fY);
matrix.postScale(inv, inv);
return matrix;
}
///////////////////////////////////////////////////////////////////////////////
SkLinearGradient::SkLinearGradient(const SkPoint pts[2], const Descriptor& desc)
: SkGradientShaderBase(desc, pts_to_unit_matrix(pts))
, fStart(pts[0])
, fEnd(pts[1]) {
}
sk_sp<SkFlattenable> SkLinearGradient::CreateProc(SkReadBuffer& buffer) {
DescriptorScope desc;
if (!desc.unflatten(buffer)) {
return nullptr;
}
SkPoint pts[2];
pts[0] = buffer.readPoint();
pts[1] = buffer.readPoint();
return SkGradientShader::MakeLinear(pts, desc.fColors, std::move(desc.fColorSpace), desc.fPos,
desc.fCount, desc.fTileMode, desc.fGradFlags,
desc.fLocalMatrix);
}
void SkLinearGradient::flatten(SkWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writePoint(fStart);
buffer.writePoint(fEnd);
}
SkShaderBase::Context* SkLinearGradient::onMakeContext(
const ContextRec& rec, SkArenaAlloc* alloc) const
{
return rec.fPreferredDstType == ContextRec::kPM4f_DstType
? CheckedMakeContext<LinearGradient4fContext>(alloc, *this, rec)
: CheckedMakeContext< LinearGradientContext>(alloc, *this, rec);
}
SkShaderBase::Context* SkLinearGradient::onMakeBurstPipelineContext(
const ContextRec& rec, SkArenaAlloc* alloc) const {
// Raster pipeline has a 2-stop specialization faster than our burst.
return fColorCount > 2 ? CheckedMakeContext<LinearGradient4fContext>(alloc, *this, rec)
: nullptr;
}
bool SkLinearGradient::adjustMatrixAndAppendStages(SkArenaAlloc*,
SkMatrix* matrix,
SkRasterPipeline*,
SkRasterPipeline*) const {
*matrix = SkMatrix::Concat(fPtsToUnit, *matrix);
return true;
}
sk_sp<SkShader> SkLinearGradient::onMakeColorSpace(SkColorSpaceXformer* xformer) const {
SkPoint pts[2] = { fStart, fEnd };
SkSTArray<8, SkColor> xformedColors(fColorCount);
xformer->apply(xformedColors.begin(), fOrigColors, fColorCount);
return SkGradientShader::MakeLinear(pts, xformedColors.begin(), fOrigPos, fColorCount,
fTileMode, fGradFlags, &this->getLocalMatrix());
}
// This swizzles SkColor into the same component order as SkPMColor, but does not actually
// "pre" multiply the color components.
//
// This allows us to map directly to Sk4f, and eventually scale down to bytes to output a
// SkPMColor from the floats, without having to swizzle each time.
//
static uint32_t SkSwizzle_Color_to_PMColor(SkColor c) {
return SkPackARGB32NoCheck(SkColorGetA(c), SkColorGetR(c), SkColorGetG(c), SkColorGetB(c));
}
SkLinearGradient::LinearGradientContext::LinearGradientContext(
const SkLinearGradient& shader, const ContextRec& ctx)
: INHERITED(shader, ctx)
{
// setup for Sk4f
const int count = shader.fColorCount;
SkASSERT(count > 1);
fRecs.setCount(count);
Rec* rec = fRecs.begin();
if (shader.fOrigPos) {
rec[0].fPos = 0;
SkDEBUGCODE(rec[0].fPosScale = SK_FloatNaN;) // should never get used
for (int i = 1; i < count; ++i) {
rec[i].fPos = SkTPin(shader.fOrigPos[i], rec[i - 1].fPos, 1.0f);
float diff = rec[i].fPos - rec[i - 1].fPos;
if (diff > 0) {
rec[i].fPosScale = 1.0f / diff;
} else {
rec[i].fPosScale = 0;
}
}
} else {
// no pos specified, so we compute evenly spaced values
const float scale = float(count - 1);
const float invScale = 1.0f / scale;
for (int i = 0; i < count; ++i) {
rec[i].fPos = i * invScale;
rec[i].fPosScale = scale;
}
}
rec[count - 1].fPos = 1; // overwrite the last value just to be sure we end at 1.0
fApplyAlphaAfterInterp = true;
if ((shader.getGradFlags() & SkGradientShader::kInterpolateColorsInPremul_Flag) ||
shader.colorsAreOpaque())
{
fApplyAlphaAfterInterp = false;
}
if (fApplyAlphaAfterInterp) {
// Our fColor values are in PMColor order, but are still unpremultiplied, allowing us to
// interpolate in unpremultiplied space first, and then scale by alpha right before we
// convert to SkPMColor bytes.
const float paintAlpha = ctx.fPaint->getAlpha() * kInv255Float;
const Sk4f scale(1, 1, 1, paintAlpha);
for (int i = 0; i < count; ++i) {
uint32_t c = SkSwizzle_Color_to_PMColor(shader.fOrigColors[i]);
rec[i].fColor = SkNx_cast<float>(Sk4b::Load(&c)) * scale;
if (i > 0) {
SkASSERT(rec[i - 1].fPos <= rec[i].fPos);
}
}
} else {
// Our fColor values are premultiplied, so converting to SkPMColor is just a matter
// of converting the floats down to bytes.
unsigned alphaScale = ctx.fPaint->getAlpha() + (ctx.fPaint->getAlpha() >> 7);
for (int i = 0; i < count; ++i) {
SkPMColor pmc = SkPreMultiplyColor(shader.fOrigColors[i]);
pmc = SkAlphaMulQ(pmc, alphaScale);
rec[i].fColor = SkNx_cast<float>(Sk4b::Load(&pmc));
if (i > 0) {
SkASSERT(rec[i - 1].fPos <= rec[i].fPos);
}
}
}
}
#define NO_CHECK_ITER \
do { \
unsigned fi = SkGradFixedToFixed(fx) >> SkGradientShaderBase::kCache32Shift; \
SkASSERT(fi <= 0xFF); \
fx += dx; \
*dstC++ = cache[toggle + fi]; \
toggle = next_dither_toggle(toggle); \
} while (0)
namespace {
typedef void (*LinearShadeProc)(TileProc proc, SkGradFixed dx, SkGradFixed fx,
SkPMColor* dstC, const SkPMColor* cache,
int toggle, int count);
// Linear interpolation (lerp) is unnecessary if there are no sharp
// discontinuities in the gradient - which must be true if there are
// only 2 colors - but it's cheap.
void shadeSpan_linear_vertical_lerp(TileProc proc, SkGradFixed dx, SkGradFixed fx,
SkPMColor* SK_RESTRICT dstC,
const SkPMColor* SK_RESTRICT cache,
int toggle, int count) {
// We're a vertical gradient, so no change in a span.
// If colors change sharply across the gradient, dithering is
// insufficient (it subsamples the color space) and we need to lerp.
unsigned fullIndex = proc(SkGradFixedToFixed(fx));
unsigned fi = fullIndex >> SkGradientShaderBase::kCache32Shift;
unsigned remainder = fullIndex & ((1 << SkGradientShaderBase::kCache32Shift) - 1);
int index0 = fi + toggle;
int index1 = index0;
if (fi < SkGradientShaderBase::kCache32Count - 1) {
index1 += 1;
}
SkPMColor lerp = SkFastFourByteInterp(cache[index1], cache[index0], remainder);
index0 ^= SkGradientShaderBase::kDitherStride32;
index1 ^= SkGradientShaderBase::kDitherStride32;
SkPMColor dlerp = SkFastFourByteInterp(cache[index1], cache[index0], remainder);
sk_memset32_dither(dstC, lerp, dlerp, count);
}
void shadeSpan_linear_clamp(TileProc proc, SkGradFixed dx, SkGradFixed fx,
SkPMColor* SK_RESTRICT dstC,
const SkPMColor* SK_RESTRICT cache,
int toggle, int count) {
SkClampRange range;
range.init(fx, dx, count, 0, SkGradientShaderBase::kCache32Count - 1);
range.validate(count);
if ((count = range.fCount0) > 0) {
sk_memset32_dither(dstC,
cache[toggle + range.fV0],
cache[next_dither_toggle(toggle) + range.fV0],
count);
dstC += count;
}
if ((count = range.fCount1) > 0) {
int unroll = count >> 3;
fx = range.fFx1;
for (int i = 0; i < unroll; i++) {
NO_CHECK_ITER; NO_CHECK_ITER;
NO_CHECK_ITER; NO_CHECK_ITER;
NO_CHECK_ITER; NO_CHECK_ITER;
NO_CHECK_ITER; NO_CHECK_ITER;
}
if ((count &= 7) > 0) {
do {
NO_CHECK_ITER;
} while (--count != 0);
}
}
if ((count = range.fCount2) > 0) {
sk_memset32_dither(dstC,
cache[toggle + range.fV1],
cache[next_dither_toggle(toggle) + range.fV1],
count);
}
}
void shadeSpan_linear_mirror(TileProc proc, SkGradFixed dx, SkGradFixed fx,
SkPMColor* SK_RESTRICT dstC,
const SkPMColor* SK_RESTRICT cache,
int toggle, int count) {
do {
unsigned fi = mirror_8bits(SkGradFixedToFixed(fx) >> 8);
SkASSERT(fi <= 0xFF);
fx += dx;
*dstC++ = cache[toggle + fi];
toggle = next_dither_toggle(toggle);
} while (--count != 0);
}
void shadeSpan_linear_repeat(TileProc proc, SkGradFixed dx, SkGradFixed fx,
SkPMColor* SK_RESTRICT dstC,
const SkPMColor* SK_RESTRICT cache,
int toggle, int count) {
do {
unsigned fi = repeat_8bits(SkGradFixedToFixed(fx) >> 8);
SkASSERT(fi <= 0xFF);
fx += dx;
*dstC++ = cache[toggle + fi];
toggle = next_dither_toggle(toggle);
} while (--count != 0);
}
}
void SkLinearGradient::LinearGradientContext::shadeSpan(int x, int y, SkPMColor* SK_RESTRICT dstC,
int count) {
SkASSERT(count > 0);
const SkLinearGradient& linearGradient = static_cast<const SkLinearGradient&>(fShader);
if (SkShader::kClamp_TileMode == linearGradient.fTileMode &&
kLinear_MatrixClass == fDstToIndexClass)
{
this->shade4_clamp(x, y, dstC, count);
return;
}
SkPoint srcPt;
SkMatrix::MapXYProc dstProc = fDstToIndexProc;
TileProc proc = linearGradient.fTileProc;
const SkPMColor* SK_RESTRICT cache = fCache->getCache32();
int toggle = init_dither_toggle(x, y);
if (fDstToIndexClass != kPerspective_MatrixClass) {
dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
SkGradFixed dx, fx = SkScalarPinToGradFixed(srcPt.fX);
if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
const auto step = fDstToIndex.fixedStepInX(SkIntToScalar(y));
// todo: do we need a real/high-precision value for dx here?
dx = SkScalarPinToGradFixed(step.fX);
} else {
SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
dx = SkScalarPinToGradFixed(fDstToIndex.getScaleX());
}
LinearShadeProc shadeProc = shadeSpan_linear_repeat;
if (0 == dx) {
shadeProc = shadeSpan_linear_vertical_lerp;
} else if (SkShader::kClamp_TileMode == linearGradient.fTileMode) {
shadeProc = shadeSpan_linear_clamp;
} else if (SkShader::kMirror_TileMode == linearGradient.fTileMode) {
shadeProc = shadeSpan_linear_mirror;
} else {
SkASSERT(SkShader::kRepeat_TileMode == linearGradient.fTileMode);
}
(*shadeProc)(proc, dx, fx, dstC, cache, toggle, count);
} else {
SkScalar dstX = SkIntToScalar(x);
SkScalar dstY = SkIntToScalar(y);
do {
dstProc(fDstToIndex, dstX, dstY, &srcPt);
unsigned fi = proc(SkScalarToFixed(srcPt.fX));
SkASSERT(fi <= 0xFFFF);
*dstC++ = cache[toggle + (fi >> kCache32Shift)];
toggle = next_dither_toggle(toggle);
dstX += SK_Scalar1;
} while (--count != 0);
}
}
SkShader::GradientType SkLinearGradient::asAGradient(GradientInfo* info) const {
if (info) {
commonAsAGradient(info);
info->fPoint[0] = fStart;
info->fPoint[1] = fEnd;
}
return kLinear_GradientType;
}
#if SK_SUPPORT_GPU
#include "GrColorSpaceXform.h"
#include "GrShaderCaps.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "SkGr.h"
/////////////////////////////////////////////////////////////////////
class GrLinearGradient : public GrGradientEffect {
public:
class GLSLLinearProcessor;
static sk_sp<GrFragmentProcessor> Make(const CreateArgs& args) {
auto processor = sk_sp<GrLinearGradient>(new GrLinearGradient(args));
return processor->isValid() ? std::move(processor) : nullptr;
}
~GrLinearGradient() override {}
const char* name() const override { return "Linear Gradient"; }
private:
GrLinearGradient(const CreateArgs& args) : INHERITED(args, args.fShader->colorsAreOpaque()) {
this->initClassID<GrLinearGradient>();
}
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
virtual void onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const override;
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
typedef GrGradientEffect INHERITED;
};
/////////////////////////////////////////////////////////////////////
class GrLinearGradient::GLSLLinearProcessor : public GrGradientEffect::GLSLProcessor {
public:
GLSLLinearProcessor(const GrProcessor&) {}
~GLSLLinearProcessor() override {}
virtual void emitCode(EmitArgs&) override;
static void GenKey(const GrProcessor& processor, const GrShaderCaps&, GrProcessorKeyBuilder* b) {
b->add32(GenBaseGradientKey(processor));
}
private:
typedef GrGradientEffect::GLSLProcessor INHERITED;
};
/////////////////////////////////////////////////////////////////////
GrGLSLFragmentProcessor* GrLinearGradient::onCreateGLSLInstance() const {
return new GrLinearGradient::GLSLLinearProcessor(*this);
}
void GrLinearGradient::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
GrLinearGradient::GLSLLinearProcessor::GenKey(*this, caps, b);
}
/////////////////////////////////////////////////////////////////////
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrLinearGradient);
#if GR_TEST_UTILS
sk_sp<GrFragmentProcessor> GrLinearGradient::TestCreate(GrProcessorTestData* d) {
SkPoint points[] = {{d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()},
{d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()}};
RandomGradientParams params(d->fRandom);
auto shader = params.fUseColors4f ?
SkGradientShader::MakeLinear(points, params.fColors4f, params.fColorSpace, params.fStops,
params.fColorCount, params.fTileMode) :
SkGradientShader::MakeLinear(points, params.fColors, params.fStops,
params.fColorCount, params.fTileMode);
GrTest::TestAsFPArgs asFPArgs(d);
sk_sp<GrFragmentProcessor> fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args());
GrAlwaysAssert(fp);
return fp;
}
#endif
/////////////////////////////////////////////////////////////////////
void GrLinearGradient::GLSLLinearProcessor::emitCode(EmitArgs& args) {
const GrLinearGradient& ge = args.fFp.cast<GrLinearGradient>();
this->emitUniforms(args.fUniformHandler, ge);
SkString t = args.fFragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
t.append(".x");
this->emitColor(args.fFragBuilder,
args.fUniformHandler,
args.fShaderCaps,
ge,
t.c_str(),
args.fOutputColor,
args.fInputColor,
args.fTexSamplers);
}
/////////////////////////////////////////////////////////////////////
sk_sp<GrFragmentProcessor> SkLinearGradient::asFragmentProcessor(const AsFPArgs& args) const {
SkASSERT(args.fContext);
SkMatrix matrix;
if (!this->getLocalMatrix().invert(&matrix)) {
return nullptr;
}
if (args.fLocalMatrix) {
SkMatrix inv;
if (!args.fLocalMatrix->invert(&inv)) {
return nullptr;
}
matrix.postConcat(inv);
}
matrix.postConcat(fPtsToUnit);
sk_sp<GrColorSpaceXform> colorSpaceXform = GrColorSpaceXform::Make(fColorSpace.get(),
args.fDstColorSpace);
sk_sp<GrFragmentProcessor> inner(GrLinearGradient::Make(
GrGradientEffect::CreateArgs(args.fContext, this, &matrix, fTileMode,
std::move(colorSpaceXform), SkToBool(args.fDstColorSpace))));
if (!inner) {
return nullptr;
}
return GrFragmentProcessor::MulOutputByInputAlpha(std::move(inner));
}
#endif
#ifndef SK_IGNORE_TO_STRING
void SkLinearGradient::toString(SkString* str) const {
str->append("SkLinearGradient (");
str->appendf("start: (%f, %f)", fStart.fX, fStart.fY);
str->appendf(" end: (%f, %f) ", fEnd.fX, fEnd.fY);
this->INHERITED::toString(str);
str->append(")");
}
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
#include "SkNx.h"
static const SkLinearGradient::LinearGradientContext::Rec*
find_forward(const SkLinearGradient::LinearGradientContext::Rec rec[], float tiledX) {
SkASSERT(tiledX >= 0 && tiledX <= 1);
SkASSERT(rec[0].fPos >= 0 && rec[0].fPos <= 1);
SkASSERT(rec[1].fPos >= 0 && rec[1].fPos <= 1);
SkASSERT(rec[0].fPos <= rec[1].fPos);
rec += 1;
while (rec->fPos < tiledX || rec->fPosScale == 0) {
SkASSERT(rec[0].fPos >= 0 && rec[0].fPos <= 1);
SkASSERT(rec[1].fPos >= 0 && rec[1].fPos <= 1);
SkASSERT(rec[0].fPos <= rec[1].fPos);
rec += 1;
}
return rec - 1;
}
static const SkLinearGradient::LinearGradientContext::Rec*
find_backward(const SkLinearGradient::LinearGradientContext::Rec rec[], float tiledX) {
SkASSERT(tiledX >= 0 && tiledX <= 1);
SkASSERT(rec[0].fPos >= 0 && rec[0].fPos <= 1);
SkASSERT(rec[1].fPos >= 0 && rec[1].fPos <= 1);
SkASSERT(rec[0].fPos <= rec[1].fPos);
while (tiledX < rec->fPos || rec[1].fPosScale == 0) {
rec -= 1;
SkASSERT(rec[0].fPos >= 0 && rec[0].fPos <= 1);
SkASSERT(rec[1].fPos >= 0 && rec[1].fPos <= 1);
SkASSERT(rec[0].fPos <= rec[1].fPos);
}
return rec;
}
// As an optimization, we can apply the dither bias before interpolation -- but only when
// operating in premul space (apply_alpha == false). When apply_alpha == true, we must
// defer the bias application until after premul.
//
// The following two helpers encapsulate this logic: pre_bias is called before interpolation,
// and effects the bias when apply_alpha == false, while post_bias is called after premul and
// effects the bias for the apply_alpha == true case.
template <bool apply_alpha>
Sk4f pre_bias(const Sk4f& x, const Sk4f& bias) {
return apply_alpha ? x : x + bias;
}
template <bool apply_alpha>
Sk4f post_bias(const Sk4f& x, const Sk4f& bias) {
return apply_alpha ? x + bias : x;
}
template <bool apply_alpha> SkPMColor trunc_from_255(const Sk4f& x, const Sk4f& bias) {
SkPMColor c;
Sk4f c4f255 = x;
if (apply_alpha) {
// Due to use of multiplication by the 1/255 reciprocal instead of division by 255,
// non-integer alpha values very close to their ceiling can push the color values
// above the alpha value, which will become an invalid premultiplied color. So nudge
// alpha up slightly by a compensating scale to keep it above the color values.
// To do this, multiply alpha by a number slightly greater than 1 to compensate
// for error in scaling from the 1/255 approximation. Since this error is then
// scaled by the alpha value, we need to scale the epsilon by 255 to get a safe
// upper bound on the error.
static constexpr float alphaScale = 1 + 255*std::numeric_limits<float>::epsilon();
const float scale = x[SkPM4f::A] * (1 / 255.f);
c4f255 *= Sk4f(scale, scale, scale, alphaScale);
}
SkNx_cast<uint8_t>(post_bias<apply_alpha>(c4f255, bias)).store(&c);
return c;
}
template <bool apply_alpha> void fill(SkPMColor dst[], int count,
const Sk4f& c4, const Sk4f& bias0, const Sk4f& bias1) {
const SkPMColor c0 = trunc_from_255<apply_alpha>(pre_bias<apply_alpha>(c4, bias0), bias0);
const SkPMColor c1 = trunc_from_255<apply_alpha>(pre_bias<apply_alpha>(c4, bias1), bias1);
sk_memset32_dither(dst, c0, c1, count);
}
template <bool apply_alpha> void fill(SkPMColor dst[], int count, const Sk4f& c4) {
// Assumes that c4 does not need to be dithered.
sk_memset32(dst, trunc_from_255<apply_alpha>(c4, 0), count);
}
/*
* TODOs
*
* - tilemodes
* - interp before or after premul
* - perspective
* - optimizations
* - use fixed (32bit or 16bit) instead of floats?
*/
static Sk4f lerp_color(float fx, const SkLinearGradient::LinearGradientContext::Rec* rec) {
SkASSERT(fx >= rec[0].fPos);
SkASSERT(fx <= rec[1].fPos);
const float p0 = rec[0].fPos;
const Sk4f c0 = rec[0].fColor;
const Sk4f c1 = rec[1].fColor;
const Sk4f diffc = c1 - c0;
const float scale = rec[1].fPosScale;
const float t = (fx - p0) * scale;
return c0 + Sk4f(t) * diffc;
}
template <bool apply_alpha> void ramp(SkPMColor dstC[], int n, const Sk4f& c, const Sk4f& dc,
const Sk4f& dither0, const Sk4f& dither1) {
Sk4f dc2 = dc + dc;
Sk4f dc4 = dc2 + dc2;
Sk4f cd0 = pre_bias<apply_alpha>(c , dither0);
Sk4f cd1 = pre_bias<apply_alpha>(c + dc, dither1);
Sk4f cd2 = cd0 + dc2;
Sk4f cd3 = cd1 + dc2;
while (n >= 4) {
if (!apply_alpha) {
Sk4f_ToBytes((uint8_t*)dstC, cd0, cd1, cd2, cd3);
dstC += 4;
} else {
*dstC++ = trunc_from_255<apply_alpha>(cd0, dither0);
*dstC++ = trunc_from_255<apply_alpha>(cd1, dither1);
*dstC++ = trunc_from_255<apply_alpha>(cd2, dither0);
*dstC++ = trunc_from_255<apply_alpha>(cd3, dither1);
}
cd0 = cd0 + dc4;
cd1 = cd1 + dc4;
cd2 = cd2 + dc4;
cd3 = cd3 + dc4;
n -= 4;
}
if (n & 2) {
*dstC++ = trunc_from_255<apply_alpha>(cd0, dither0);
*dstC++ = trunc_from_255<apply_alpha>(cd1, dither1);
cd0 = cd0 + dc2;
}
if (n & 1) {
*dstC++ = trunc_from_255<apply_alpha>(cd0, dither0);
}
}
template <bool apply_alpha, bool dx_is_pos>
void SkLinearGradient::LinearGradientContext::shade4_dx_clamp(SkPMColor dstC[], int count,
float fx, float dx, float invDx,
const float dither[2]) {
Sk4f dither0(dither[0]);
Sk4f dither1(dither[1]);
const Rec* rec = fRecs.begin();
const Sk4f dx4 = Sk4f(dx);
SkDEBUGCODE(SkPMColor* endDstC = dstC + count;)
if (dx_is_pos) {
if (fx < 0) {
// count is guaranteed to be positive, but the first arg may overflow int32 after
// increment => casting to uint32 ensures correct clamping.
int n = SkTMin<uint32_t>(static_cast<uint32_t>(SkFloatToIntFloor(-fx * invDx)) + 1,
count);
SkASSERT(n > 0);
fill<apply_alpha>(dstC, n, rec[0].fColor);
count -= n;
dstC += n;
fx += n * dx;
SkASSERT(0 == count || fx >= 0);
if (n & 1) {
SkTSwap(dither0, dither1);
}
}
} else { // dx < 0
if (fx > 1) {
// count is guaranteed to be positive, but the first arg may overflow int32 after
// increment => casting to uint32 ensures correct clamping.
int n = SkTMin<uint32_t>(static_cast<uint32_t>(SkFloatToIntFloor((1 - fx) * invDx)) + 1,
count);
SkASSERT(n > 0);
fill<apply_alpha>(dstC, n, rec[fRecs.count() - 1].fColor);
count -= n;
dstC += n;
fx += n * dx;
SkASSERT(0 == count || fx <= 1);
if (n & 1) {
SkTSwap(dither0, dither1);
}
}
}
SkASSERT(count >= 0);
const Rec* r;
if (dx_is_pos) {
r = fRecs.begin(); // start at the beginning
} else {
r = fRecs.begin() + fRecs.count() - 2; // start at the end
}
while (count > 0) {
if (dx_is_pos) {
if (fx >= 1) {
fill<apply_alpha>(dstC, count, rec[fRecs.count() - 1].fColor);
return;
}
} else { // dx < 0
if (fx <= 0) {
fill<apply_alpha>(dstC, count, rec[0].fColor);
return;
}
}
if (dx_is_pos) {
r = find_forward(r, fx);
} else {
r = find_backward(r, fx);
}
SkASSERT(r >= fRecs.begin() && r < fRecs.begin() + fRecs.count() - 1);
const float p0 = r[0].fPos;
const Sk4f c0 = r[0].fColor;
const float p1 = r[1].fPos;
const Sk4f diffc = Sk4f(r[1].fColor) - c0;
const float scale = r[1].fPosScale;
const float t = (fx - p0) * scale;
const Sk4f c = c0 + Sk4f(t) * diffc;
const Sk4f dc = diffc * dx4 * Sk4f(scale);
int n;
if (dx_is_pos) {
n = SkTMin((int)((p1 - fx) * invDx) + 1, count);
} else {
n = SkTMin((int)((p0 - fx) * invDx) + 1, count);
}
fx += n * dx;
// fx should now outside of the p0..p1 interval. However, due to float precision loss,
// its possible that fx is slightly too small/large, so we clamp it.
if (dx_is_pos) {
fx = SkTMax(fx, p1);
} else {
fx = SkTMin(fx, p0);
}
ramp<apply_alpha>(dstC, n, c, dc, dither0, dither1);
dstC += n;
SkASSERT(dstC <= endDstC);
if (n & 1) {
SkTSwap(dither0, dither1);
}
count -= n;
SkASSERT(count >= 0);
}
}
void SkLinearGradient::LinearGradientContext::shade4_clamp(int x, int y, SkPMColor dstC[],
int count) {
SkASSERT(count > 0);
SkASSERT(kLinear_MatrixClass == fDstToIndexClass);
SkPoint srcPt;
fDstToIndexProc(fDstToIndex, x + SK_ScalarHalf, y + SK_ScalarHalf, &srcPt);
float fx = srcPt.x();
const float dx = fDstToIndex.getScaleX();
// Default our dither bias values to 1/2, (rounding), which is no dithering
float dither0 = 0.5f;
float dither1 = 0.5f;
if (fDither) {
const float ditherCell[] = {
1/8.0f, 5/8.0f,
7/8.0f, 3/8.0f,
};
const int rowIndex = (y & 1) << 1;
dither0 = ditherCell[rowIndex];
dither1 = ditherCell[rowIndex + 1];
if (x & 1) {
SkTSwap(dither0, dither1);
}
}
const float dither[2] = { dither0, dither1 };
if (SkScalarNearlyZero(dx * count)) { // gradient is vertical
const float pinFx = SkTPin(fx, 0.0f, 1.0f);
Sk4f c = lerp_color(pinFx, find_forward(fRecs.begin(), pinFx));
if (fApplyAlphaAfterInterp) {
fill<true>(dstC, count, c, dither0, dither1);
} else {
fill<false>(dstC, count, c, dither0, dither1);
}
return;
}
SkASSERT(0.f != dx);
const float invDx = 1 / dx;
if (dx > 0) {
if (fApplyAlphaAfterInterp) {
this->shade4_dx_clamp<true, true>(dstC, count, fx, dx, invDx, dither);
} else {
this->shade4_dx_clamp<false, true>(dstC, count, fx, dx, invDx, dither);
}
} else {
if (fApplyAlphaAfterInterp) {
this->shade4_dx_clamp<true, false>(dstC, count, fx, dx, invDx, dither);
} else {
this->shade4_dx_clamp<false, false>(dstC, count, fx, dx, invDx, dither);
}
}
}
|