aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/shaders/SkLightingShader.cpp
blob: b19f9df97f317aca5fc7dd2baef9258bb67891c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkArenaAlloc.h"
#include "SkBitmapProcShader.h"
#include "SkBitmapProcState.h"
#include "SkColor.h"
#include "SkColorSpaceXformer.h"
#include "SkEmptyShader.h"
#include "SkLightingShader.h"
#include "SkMathPriv.h"
#include "SkNormalSource.h"
#include "SkPoint3.h"
#include "SkReadBuffer.h"
#include "SkShaderBase.h"
#include "SkWriteBuffer.h"

////////////////////////////////////////////////////////////////////////////

/*
   SkLightingShader TODOs:
        support different light types
        support multiple lights
        fix non-opaque diffuse textures

    To Test:
        A8 diffuse textures
        down & upsampled draws
*/



/** \class SkLightingShaderImpl
    This subclass of shader applies lighting.
*/
class SkLightingShaderImpl : public SkShaderBase {
public:
    /** Create a new lighting shader that uses the provided normal map and
        lights to light the diffuse bitmap.
        @param diffuseShader     the shader that provides the diffuse colors
        @param normalSource      the source of normals for lighting computation
        @param lights            the lights applied to the geometry
    */
    SkLightingShaderImpl(sk_sp<SkShader> diffuseShader,
                         sk_sp<SkNormalSource> normalSource,
                         sk_sp<SkLights> lights)
        : fDiffuseShader(std::move(diffuseShader))
        , fNormalSource(std::move(normalSource))
        , fLights(std::move(lights)) {}

    bool isOpaque() const override;

#if SK_SUPPORT_GPU
    sk_sp<GrFragmentProcessor> asFragmentProcessor(const AsFPArgs&) const override;
#endif

    class LightingShaderContext : public Context {
    public:
        // The context takes ownership of the context and provider. It will call their destructors
        // and then indirectly free their memory by calling free() on heapAllocated
        LightingShaderContext(const SkLightingShaderImpl&, const ContextRec&,
                              SkShaderBase::Context* diffuseContext, SkNormalSource::Provider*,
                              void* heapAllocated);

        void shadeSpan(int x, int y, SkPMColor[], int count) override;

        uint32_t getFlags() const override { return fFlags; }

    private:
        SkShaderBase::Context*    fDiffuseContext;
        SkNormalSource::Provider* fNormalProvider;
        SkColor                   fPaintColor;
        uint32_t                  fFlags;

        typedef Context INHERITED;
    };

    SK_TO_STRING_OVERRIDE()
    SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkLightingShaderImpl)

protected:
    void flatten(SkWriteBuffer&) const override;
    Context* onMakeContext(const ContextRec&, SkArenaAlloc*) const override;
    sk_sp<SkShader> onMakeColorSpace(SkColorSpaceXformer* xformer) const override;

private:
    sk_sp<SkShader> fDiffuseShader;
    sk_sp<SkNormalSource> fNormalSource;
    sk_sp<SkLights> fLights;

    friend class SkLightingShader;

    typedef SkShaderBase INHERITED;
};

////////////////////////////////////////////////////////////////////////////

#if SK_SUPPORT_GPU

#include "GrCoordTransform.h"
#include "GrFragmentProcessor.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
#include "SkGr.h"

// This FP expects a premul'd color input for its diffuse color. Premul'ing of the paint's color is
// handled by the asFragmentProcessor() factory, but shaders providing diffuse color must output it
// premul'd.
class LightingFP : public GrFragmentProcessor {
public:
    static sk_sp<GrFragmentProcessor> Make(sk_sp<GrFragmentProcessor> normalFP,
                                           sk_sp<SkLights> lights) {
        return sk_sp<GrFragmentProcessor>(new LightingFP(std::move(normalFP), std::move(lights)));
    }

    class GLSLLightingFP : public GrGLSLFragmentProcessor {
    public:
        GLSLLightingFP() {
            fAmbientColor.fX = 0.0f;
        }

        void emitCode(EmitArgs& args) override {

            GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
            GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
            const LightingFP& lightingFP = args.fFp.cast<LightingFP>();

            const char *lightDirsUniName = nullptr;
            const char *lightColorsUniName = nullptr;
            if (lightingFP.fDirectionalLights.count() != 0) {
                fLightDirsUni = uniformHandler->addUniformArray(
                        kFragment_GrShaderFlag,
                        kVec3f_GrSLType,
                        kDefault_GrSLPrecision,
                        "LightDir",
                        lightingFP.fDirectionalLights.count(),
                        &lightDirsUniName);
                fLightColorsUni = uniformHandler->addUniformArray(
                        kFragment_GrShaderFlag,
                        kVec3f_GrSLType,
                        kDefault_GrSLPrecision,
                        "LightColor",
                        lightingFP.fDirectionalLights.count(),
                        &lightColorsUniName);
            }

            const char* ambientColorUniName = nullptr;
            fAmbientColorUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
                                                          kVec3f_GrSLType, kDefault_GrSLPrecision,
                                                          "AmbientColor", &ambientColorUniName);

            fragBuilder->codeAppendf("vec4 diffuseColor = %s;", args.fInputColor);

            SkString dstNormalName("dstNormal");
            this->emitChild(0, &dstNormalName, args);

            fragBuilder->codeAppendf("vec3 normal = %s.xyz;", dstNormalName.c_str());

            fragBuilder->codeAppend( "vec3 result = vec3(0.0);");

            // diffuse light
            if (lightingFP.fDirectionalLights.count() != 0) {
                fragBuilder->codeAppendf("for (int i = 0; i < %d; i++) {",
                                         lightingFP.fDirectionalLights.count());
                // TODO: modulate the contribution from each light based on the shadow map
                fragBuilder->codeAppendf("    float NdotL = clamp(dot(normal, %s[i]), 0.0, 1.0);",
                                         lightDirsUniName);
                fragBuilder->codeAppendf("    result += %s[i]*diffuseColor.rgb*NdotL;",
                                         lightColorsUniName);
                fragBuilder->codeAppend("}");
            }

            // ambient light
            fragBuilder->codeAppendf("result += %s * diffuseColor.rgb;", ambientColorUniName);

            // Clamping to alpha (equivalent to an unpremul'd clamp to 1.0)
            fragBuilder->codeAppendf("%s = vec4(clamp(result.rgb, 0.0, diffuseColor.a), "
                                               "diffuseColor.a);", args.fOutputColor);
        }

        static void GenKey(const GrProcessor& proc, const GrShaderCaps&, GrProcessorKeyBuilder* b) {
            const LightingFP& lightingFP = proc.cast<LightingFP>();
            b->add32(lightingFP.fDirectionalLights.count());
        }

    protected:
        void onSetData(const GrGLSLProgramDataManager& pdman,
                       const GrFragmentProcessor& proc) override {
            const LightingFP& lightingFP = proc.cast<LightingFP>();

            const SkTArray<SkLights::Light>& directionalLights = lightingFP.directionalLights();
            if (directionalLights != fDirectionalLights) {
                SkTArray<SkColor3f> lightDirs(directionalLights.count());
                SkTArray<SkVector3> lightColors(directionalLights.count());
                for (const SkLights::Light& light : directionalLights) {
                    lightDirs.push_back(light.dir());
                    lightColors.push_back(light.color());
                }

                pdman.set3fv(fLightDirsUni, directionalLights.count(), &(lightDirs[0].fX));
                pdman.set3fv(fLightColorsUni, directionalLights.count(), &(lightColors[0].fX));

                fDirectionalLights = directionalLights;
            }

            const SkColor3f& ambientColor = lightingFP.ambientColor();
            if (ambientColor != fAmbientColor) {
                pdman.set3fv(fAmbientColorUni, 1, &ambientColor.fX);
                fAmbientColor = ambientColor;
            }
        }

    private:
        SkTArray<SkLights::Light> fDirectionalLights;
        GrGLSLProgramDataManager::UniformHandle fLightDirsUni;
        GrGLSLProgramDataManager::UniformHandle fLightColorsUni;

        SkColor3f fAmbientColor;
        GrGLSLProgramDataManager::UniformHandle fAmbientColorUni;
    };

    void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override {
        GLSLLightingFP::GenKey(*this, caps, b);
    }

    const char* name() const override { return "LightingFP"; }

    const SkTArray<SkLights::Light>& directionalLights() const { return fDirectionalLights; }
    const SkColor3f& ambientColor() const { return fAmbientColor; }

private:
    LightingFP(sk_sp<GrFragmentProcessor> normalFP, sk_sp<SkLights> lights)
            : INHERITED(kPreservesOpaqueInput_OptimizationFlag) {
        // fuse all ambient lights into a single one
        fAmbientColor = lights->ambientLightColor();
        for (int i = 0; i < lights->numLights(); ++i) {
            if (SkLights::Light::kDirectional_LightType == lights->light(i).type()) {
                fDirectionalLights.push_back(lights->light(i));
                // TODO get the handle to the shadow map if there is one
            } else {
                SkDEBUGFAIL("Unimplemented Light Type passed to LightingFP");
            }
        }

        this->registerChildProcessor(std::move(normalFP));
        this->initClassID<LightingFP>();
    }

    GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new GLSLLightingFP; }

    bool onIsEqual(const GrFragmentProcessor& proc) const override {
        const LightingFP& lightingFP = proc.cast<LightingFP>();
        return fDirectionalLights == lightingFP.fDirectionalLights &&
               fAmbientColor == lightingFP.fAmbientColor;
    }

    SkTArray<SkLights::Light> fDirectionalLights;
    SkColor3f                 fAmbientColor;

    typedef GrFragmentProcessor INHERITED;
};

////////////////////////////////////////////////////////////////////////////

sk_sp<GrFragmentProcessor> SkLightingShaderImpl::asFragmentProcessor(const AsFPArgs& args) const {
    sk_sp<GrFragmentProcessor> normalFP(fNormalSource->asFragmentProcessor(args));
    if (!normalFP) {
        return nullptr;
    }

    if (fDiffuseShader) {
        sk_sp<GrFragmentProcessor> fpPipeline[] = {
            as_SB(fDiffuseShader)->asFragmentProcessor(args),
            LightingFP::Make(std::move(normalFP), fLights)
        };
        if (!fpPipeline[0] || !fpPipeline[1]) {
            return nullptr;
        }

        sk_sp<GrFragmentProcessor> innerLightFP = GrFragmentProcessor::RunInSeries(fpPipeline, 2);
        // FP is wrapped because paint's alpha needs to be applied to output
        return GrFragmentProcessor::MulOutputByInputAlpha(std::move(innerLightFP));
    } else {
        // FP is wrapped because paint comes in unpremul'd to fragment shader, but LightingFP
        // expects premul'd color.
        return GrFragmentProcessor::PremulInput(LightingFP::Make(std::move(normalFP), fLights));
    }
}

#endif

////////////////////////////////////////////////////////////////////////////

bool SkLightingShaderImpl::isOpaque() const {
    return (fDiffuseShader ? fDiffuseShader->isOpaque() : false);
}

SkLightingShaderImpl::LightingShaderContext::LightingShaderContext(
        const SkLightingShaderImpl& shader, const ContextRec& rec,
        SkShaderBase::Context* diffuseContext, SkNormalSource::Provider* normalProvider,
        void* heapAllocated)
    : INHERITED(shader, rec)
    , fDiffuseContext(diffuseContext)
    , fNormalProvider(normalProvider) {
    bool isOpaque = shader.isOpaque();

    // update fFlags
    uint32_t flags = 0;
    if (isOpaque && (255 == this->getPaintAlpha())) {
        flags |= kOpaqueAlpha_Flag;
    }

    fPaintColor = rec.fPaint->getColor();
    fFlags = flags;
}

static inline SkPMColor convert(SkColor3f color, U8CPU a) {
    if (color.fX <= 0.0f) {
        color.fX = 0.0f;
    } else if (color.fX >= 255.0f) {
        color.fX = 255.0f;
    }

    if (color.fY <= 0.0f) {
        color.fY = 0.0f;
    } else if (color.fY >= 255.0f) {
        color.fY = 255.0f;
    }

    if (color.fZ <= 0.0f) {
        color.fZ = 0.0f;
    } else if (color.fZ >= 255.0f) {
        color.fZ = 255.0f;
    }

    return SkPreMultiplyARGB(a, (int) color.fX,  (int) color.fY, (int) color.fZ);
}

// larger is better (fewer times we have to loop), but we shouldn't
// take up too much stack-space (each one here costs 16 bytes)
#define BUFFER_MAX 16
void SkLightingShaderImpl::LightingShaderContext::shadeSpan(int x, int y,
                                                            SkPMColor result[], int count) {
    const SkLightingShaderImpl& lightShader = static_cast<const SkLightingShaderImpl&>(fShader);

    SkPMColor diffuse[BUFFER_MAX];
    SkPoint3 normals[BUFFER_MAX];

    SkColor diffColor = fPaintColor;

    do {
        int n = SkTMin(count, BUFFER_MAX);

        fNormalProvider->fillScanLine(x, y, normals, n);

        if (fDiffuseContext) {
            fDiffuseContext->shadeSpan(x, y, diffuse, n);
        }

        for (int i = 0; i < n; ++i) {
            if (fDiffuseContext) {
                diffColor = SkUnPreMultiply::PMColorToColor(diffuse[i]);
            }

            SkColor3f accum = SkColor3f::Make(0.0f, 0.0f, 0.0f);

            // Adding ambient light
            accum.fX += lightShader.fLights->ambientLightColor().fX * SkColorGetR(diffColor);
            accum.fY += lightShader.fLights->ambientLightColor().fY * SkColorGetG(diffColor);
            accum.fZ += lightShader.fLights->ambientLightColor().fZ * SkColorGetB(diffColor);

            // This is all done in linear unpremul color space (each component 0..255.0f though)
            for (int l = 0; l < lightShader.fLights->numLights(); ++l) {
                const SkLights::Light& light = lightShader.fLights->light(l);

                SkScalar illuminanceScalingFactor = 1.0f;

                if (SkLights::Light::kDirectional_LightType == light.type()) {
                    illuminanceScalingFactor = normals[i].dot(light.dir());
                    if (illuminanceScalingFactor < 0.0f) {
                        illuminanceScalingFactor = 0.0f;
                    }
                }

                accum.fX += light.color().fX * SkColorGetR(diffColor) * illuminanceScalingFactor;
                accum.fY += light.color().fY * SkColorGetG(diffColor) * illuminanceScalingFactor;
                accum.fZ += light.color().fZ * SkColorGetB(diffColor) * illuminanceScalingFactor;
            }

            // convert() premultiplies the accumulate color with alpha
            result[i] = convert(accum, SkColorGetA(diffColor));
        }

        result += n;
        x += n;
        count -= n;
    } while (count > 0);
}

////////////////////////////////////////////////////////////////////////////

#ifndef SK_IGNORE_TO_STRING
void SkLightingShaderImpl::toString(SkString* str) const {
    str->appendf("LightingShader: ()");
}
#endif

sk_sp<SkFlattenable> SkLightingShaderImpl::CreateProc(SkReadBuffer& buf) {

    // Discarding SkShader flattenable params
    bool hasLocalMatrix = buf.readBool();
    SkAssertResult(!hasLocalMatrix);

    sk_sp<SkLights> lights = SkLights::MakeFromBuffer(buf);

    sk_sp<SkNormalSource> normalSource(buf.readFlattenable<SkNormalSource>());

    bool hasDiffuse = buf.readBool();
    sk_sp<SkShader> diffuseShader = nullptr;
    if (hasDiffuse) {
        diffuseShader = buf.readFlattenable<SkShaderBase>();
    }

    return sk_make_sp<SkLightingShaderImpl>(std::move(diffuseShader), std::move(normalSource),
                                            std::move(lights));
}

void SkLightingShaderImpl::flatten(SkWriteBuffer& buf) const {
    this->INHERITED::flatten(buf);

    fLights->flatten(buf);

    buf.writeFlattenable(fNormalSource.get());
    buf.writeBool(fDiffuseShader);
    if (fDiffuseShader) {
        buf.writeFlattenable(fDiffuseShader.get());
    }
}

SkShaderBase::Context* SkLightingShaderImpl::onMakeContext(
    const ContextRec& rec, SkArenaAlloc* alloc) const
{
    SkShaderBase::Context *diffuseContext = nullptr;
    if (fDiffuseShader) {
        diffuseContext = as_SB(fDiffuseShader)->makeContext(rec, alloc);
        if (!diffuseContext) {
            return nullptr;
        }
    }

    SkNormalSource::Provider* normalProvider = fNormalSource->asProvider(rec, alloc);
    if (!normalProvider) {
        return nullptr;
    }

    return alloc->make<LightingShaderContext>(*this, rec, diffuseContext, normalProvider, nullptr);
}

sk_sp<SkShader> SkLightingShaderImpl::onMakeColorSpace(SkColorSpaceXformer* xformer) const {
    sk_sp<SkShader> xformedDiffuseShader =
            fDiffuseShader ? xformer->apply(fDiffuseShader.get()) : nullptr;
    return SkLightingShader::Make(std::move(xformedDiffuseShader), fNormalSource,
                                  fLights->makeColorSpace(xformer));
}

///////////////////////////////////////////////////////////////////////////////

sk_sp<SkShader> SkLightingShader::Make(sk_sp<SkShader> diffuseShader,
                                       sk_sp<SkNormalSource> normalSource,
                                       sk_sp<SkLights> lights) {
    SkASSERT(lights);
    if (!normalSource) {
        normalSource = SkNormalSource::MakeFlat();
    }

    return sk_make_sp<SkLightingShaderImpl>(std::move(diffuseShader), std::move(normalSource),
                                            std::move(lights));
}

///////////////////////////////////////////////////////////////////////////////

SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkLightingShader)
    SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLightingShaderImpl)
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END

///////////////////////////////////////////////////////////////////////////////