aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/pdf/SkPDFUtils.cpp
blob: f305765389685625d3bc7d5a8310077d129f1bc6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#include "SkData.h"
#include "SkGeometry.h"
#include "SkPaint.h"
#include "SkPath.h"
#include "SkPDFResourceDict.h"
#include "SkPDFUtils.h"
#include "SkStream.h"
#include "SkString.h"
#include "SkPDFTypes.h"

#include <cmath>

sk_sp<SkPDFArray> SkPDFUtils::RectToArray(const SkRect& rect) {
    auto result = sk_make_sp<SkPDFArray>();
    result->reserve(4);
    result->appendScalar(rect.fLeft);
    result->appendScalar(rect.fTop);
    result->appendScalar(rect.fRight);
    result->appendScalar(rect.fBottom);
    return result;
}

sk_sp<SkPDFArray> SkPDFUtils::MatrixToArray(const SkMatrix& matrix) {
    SkScalar values[6];
    if (!matrix.asAffine(values)) {
        SkMatrix::SetAffineIdentity(values);
    }

    auto result = sk_make_sp<SkPDFArray>();
    result->reserve(6);
    for (size_t i = 0; i < SK_ARRAY_COUNT(values); i++) {
        result->appendScalar(values[i]);
    }
    return result;
}

// static
void SkPDFUtils::AppendTransform(const SkMatrix& matrix, SkWStream* content) {
    SkScalar values[6];
    if (!matrix.asAffine(values)) {
        SkMatrix::SetAffineIdentity(values);
    }
    for (size_t i = 0; i < SK_ARRAY_COUNT(values); i++) {
        SkPDFUtils::AppendScalar(values[i], content);
        content->writeText(" ");
    }
    content->writeText("cm\n");
}

// static
void SkPDFUtils::MoveTo(SkScalar x, SkScalar y, SkWStream* content) {
    SkPDFUtils::AppendScalar(x, content);
    content->writeText(" ");
    SkPDFUtils::AppendScalar(y, content);
    content->writeText(" m\n");
}

// static
void SkPDFUtils::AppendLine(SkScalar x, SkScalar y, SkWStream* content) {
    SkPDFUtils::AppendScalar(x, content);
    content->writeText(" ");
    SkPDFUtils::AppendScalar(y, content);
    content->writeText(" l\n");
}

// static
void SkPDFUtils::AppendCubic(SkScalar ctl1X, SkScalar ctl1Y,
                             SkScalar ctl2X, SkScalar ctl2Y,
                             SkScalar dstX, SkScalar dstY, SkWStream* content) {
    SkString cmd("y\n");
    SkPDFUtils::AppendScalar(ctl1X, content);
    content->writeText(" ");
    SkPDFUtils::AppendScalar(ctl1Y, content);
    content->writeText(" ");
    if (ctl2X != dstX || ctl2Y != dstY) {
        cmd.set("c\n");
        SkPDFUtils::AppendScalar(ctl2X, content);
        content->writeText(" ");
        SkPDFUtils::AppendScalar(ctl2Y, content);
        content->writeText(" ");
    }
    SkPDFUtils::AppendScalar(dstX, content);
    content->writeText(" ");
    SkPDFUtils::AppendScalar(dstY, content);
    content->writeText(" ");
    content->writeText(cmd.c_str());
}

static void append_quad(const SkPoint quad[], SkWStream* content) {
    SkPoint cubic[4];
    SkConvertQuadToCubic(quad, cubic);
    SkPDFUtils::AppendCubic(cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY,
                            cubic[3].fX, cubic[3].fY, content);
}

// static
void SkPDFUtils::AppendRectangle(const SkRect& rect, SkWStream* content) {
    // Skia has 0,0 at top left, pdf at bottom left.  Do the right thing.
    SkScalar bottom = SkMinScalar(rect.fBottom, rect.fTop);

    SkPDFUtils::AppendScalar(rect.fLeft, content);
    content->writeText(" ");
    SkPDFUtils::AppendScalar(bottom, content);
    content->writeText(" ");
    SkPDFUtils::AppendScalar(rect.width(), content);
    content->writeText(" ");
    SkPDFUtils::AppendScalar(rect.height(), content);
    content->writeText(" re\n");
}

// static
void SkPDFUtils::EmitPath(const SkPath& path, SkPaint::Style paintStyle,
                          bool doConsumeDegerates, SkWStream* content) {
    // Filling a path with no area results in a drawing in PDF renderers but
    // Chrome expects to be able to draw some such entities with no visible
    // result, so we detect those cases and discard the drawing for them.
    // Specifically: moveTo(X), lineTo(Y) and moveTo(X), lineTo(X), lineTo(Y).
    enum SkipFillState {
        kEmpty_SkipFillState,
        kSingleLine_SkipFillState,
        kNonSingleLine_SkipFillState,
    };
    SkipFillState fillState = kEmpty_SkipFillState;
    //if (paintStyle != SkPaint::kFill_Style) {
    //    fillState = kNonSingleLine_SkipFillState;
    //}
    SkPoint lastMovePt = SkPoint::Make(0,0);
    SkDynamicMemoryWStream currentSegment;
    SkPoint args[4];
    SkPath::Iter iter(path, false);
    for (SkPath::Verb verb = iter.next(args, doConsumeDegerates);
         verb != SkPath::kDone_Verb;
         verb = iter.next(args, doConsumeDegerates)) {
        // args gets all the points, even the implicit first point.
        switch (verb) {
            case SkPath::kMove_Verb:
                MoveTo(args[0].fX, args[0].fY, &currentSegment);
                lastMovePt = args[0];
                fillState = kEmpty_SkipFillState;
                break;
            case SkPath::kLine_Verb:
                AppendLine(args[1].fX, args[1].fY, &currentSegment);
                if ((fillState == kEmpty_SkipFillState) && (args[0] != lastMovePt)) {
                    fillState = kSingleLine_SkipFillState;
                    break;
                }
                fillState = kNonSingleLine_SkipFillState;
                break;
            case SkPath::kQuad_Verb:
                append_quad(args, &currentSegment);
                fillState = kNonSingleLine_SkipFillState;
                break;
            case SkPath::kConic_Verb: {
                const SkScalar tol = SK_Scalar1 / 4;
                SkAutoConicToQuads converter;
                const SkPoint* quads = converter.computeQuads(args, iter.conicWeight(), tol);
                for (int i = 0; i < converter.countQuads(); ++i) {
                    append_quad(&quads[i * 2], &currentSegment);
                }
                fillState = kNonSingleLine_SkipFillState;
            } break;
            case SkPath::kCubic_Verb:
                AppendCubic(args[1].fX, args[1].fY, args[2].fX, args[2].fY,
                            args[3].fX, args[3].fY, &currentSegment);
                fillState = kNonSingleLine_SkipFillState;
                break;
            case SkPath::kClose_Verb:

                    ClosePath(&currentSegment);

                currentSegment.writeToStream(content);
                currentSegment.reset();
                break;
            default:
                SkASSERT(false);
                break;
        }
    }
    if (currentSegment.bytesWritten() > 0) {
        currentSegment.writeToStream(content);
    }
}

// static
void SkPDFUtils::ClosePath(SkWStream* content) {
    content->writeText("h\n");
}

// static
void SkPDFUtils::PaintPath(SkPaint::Style style, SkPath::FillType fill,
                           SkWStream* content) {
    if (style == SkPaint::kFill_Style) {
        content->writeText("f");
    } else if (style == SkPaint::kStrokeAndFill_Style) {
        content->writeText("B");
    } else if (style == SkPaint::kStroke_Style) {
        content->writeText("S");
    }

    if (style != SkPaint::kStroke_Style) {
        NOT_IMPLEMENTED(fill == SkPath::kInverseEvenOdd_FillType, false);
        NOT_IMPLEMENTED(fill == SkPath::kInverseWinding_FillType, false);
        if (fill == SkPath::kEvenOdd_FillType) {
            content->writeText("*");
        }
    }
    content->writeText("\n");
}

// static
void SkPDFUtils::StrokePath(SkWStream* content) {
    SkPDFUtils::PaintPath(
        SkPaint::kStroke_Style, SkPath::kWinding_FillType, content);
}

// static
void SkPDFUtils::DrawFormXObject(int objectIndex, SkWStream* content) {
    content->writeText("/");
    content->writeText(SkPDFResourceDict::getResourceName(
            SkPDFResourceDict::kXObject_ResourceType,
            objectIndex).c_str());
    content->writeText(" Do\n");
}

// static
void SkPDFUtils::ApplyGraphicState(int objectIndex, SkWStream* content) {
    content->writeText("/");
    content->writeText(SkPDFResourceDict::getResourceName(
            SkPDFResourceDict::kExtGState_ResourceType,
            objectIndex).c_str());
    content->writeText(" gs\n");
}

// static
void SkPDFUtils::ApplyPattern(int objectIndex, SkWStream* content) {
    // Select Pattern color space (CS, cs) and set pattern object as current
    // color (SCN, scn)
    SkString resourceName = SkPDFResourceDict::getResourceName(
            SkPDFResourceDict::kPattern_ResourceType,
            objectIndex);
    content->writeText("/Pattern CS/Pattern cs/");
    content->writeText(resourceName.c_str());
    content->writeText(" SCN/");
    content->writeText(resourceName.c_str());
    content->writeText(" scn\n");
}

void SkPDFUtils::AppendScalar(SkScalar value, SkWStream* stream) {
    char result[kMaximumFloatDecimalLength];
    size_t len = SkPDFUtils::FloatToDecimal(SkScalarToFloat(value), result);
    SkASSERT(len < kMaximumFloatDecimalLength);
    stream->write(result, len);
}

/** Write a string into result, includeing a terminating '\0' (for
    unit testing).  Return strlen(result) (for SkWStream::write) The
    resulting string will be in the form /[-]?([0-9]*.)?[0-9]+/ and
    sscanf(result, "%f", &x) will return the original value iff the
    value is finite. This function accepts all possible input values.

    Motivation: "PDF does not support [numbers] in exponential format
    (such as 6.02e23)."  Otherwise, this function would rely on a
    sprintf-type function from the standard library. */
size_t SkPDFUtils::FloatToDecimal(float value,
                                  char result[kMaximumFloatDecimalLength]) {
    /* The longest result is -FLT_MIN.
       We serialize it as "-.0000000000000000000000000000000000000117549435"
       which has 48 characters plus a terminating '\0'. */

    /* section C.1 of the PDF1.4 spec (http://goo.gl/0SCswJ) says that
       most PDF rasterizers will use fixed-point scalars that lack the
       dynamic range of floats.  Even if this is the case, I want to
       serialize these (uncommon) very small and very large scalar
       values with enough precision to allow a floating-point
       rasterizer to read them in with perfect accuracy.
       Experimentally, rasterizers such as pdfium do seem to benefit
       from this.  Rasterizers that rely on fixed-point scalars should
       gracefully ignore these values that they can not parse. */
    char* output = &result[0];
    const char* const end = &result[kMaximumFloatDecimalLength - 1];
    // subtract one to leave space for '\0'.

    /* This function is written to accept any possible input value,
       including non-finite values such as INF and NAN.  In that case,
       we ignore value-correctness and and output a syntacticly-valid
       number. */
    if (value == SK_FloatInfinity) {
        value = FLT_MAX;  // nearest finite float.
    }
    if (value == SK_FloatNegativeInfinity) {
        value = -FLT_MAX;  // nearest finite float.
    }
    if (!std::isfinite(value) || value == 0.0f) {
        // NAN is unsupported in PDF.  Always output a valid number.
        // Also catch zero here, as a special case.
        *output++ = '0';
        *output = '\0';
        return output - result;
    }
    // Inspired by:
    // http://www.exploringbinary.com/quick-and-dirty-floating-point-to-decimal-conversion/

    if (value < 0.0) {
        *output++ = '-';
        value = -value;
    }
    SkASSERT(value >= 0.0f);

    // Must use double math to keep precision right.
    double intPart;
    double fracPart = std::modf(static_cast<double>(value), &intPart);
    SkASSERT(intPart + fracPart == static_cast<double>(value));
    size_t significantDigits = 0;
    const size_t maxSignificantDigits = 9;
    // Any fewer significant digits loses precision.  The unit test
    // checks round-trip correctness.
    SkASSERT(intPart >= 0.0 && fracPart >= 0.0);  // negative handled already.
    SkASSERT(intPart > 0.0 || fracPart > 0.0);  // zero already caught.
    if (intPart > 0.0) {
        // put the intPart digits onto a stack for later reversal.
        char reversed[1 + FLT_MAX_10_EXP];  // 39 == 1 + FLT_MAX_10_EXP
        // the largest integer part is FLT_MAX; it has 39 decimal digits.
        size_t reversedIndex = 0;
        do {
            SkASSERT(reversedIndex < sizeof(reversed));
            int digit = static_cast<int>(std::fmod(intPart, 10.0));
            SkASSERT(digit >= 0 && digit <= 9);
            reversed[reversedIndex++] = '0' + digit;
            intPart = std::floor(intPart / 10.0);
        } while (intPart > 0.0);
        significantDigits = reversedIndex;
        SkASSERT(reversedIndex <= sizeof(reversed));
        SkASSERT(output + reversedIndex <= end);
        while (reversedIndex-- > 0) {  // pop from stack, append to result
            *output++ = reversed[reversedIndex];
        }
    }
    if (fracPart > 0 && significantDigits < maxSignificantDigits) {
        *output++ = '.';
        SkASSERT(output <= end);
        do {
            fracPart = std::modf(fracPart * 10.0, &intPart);
            int digit = static_cast<int>(intPart);
            SkASSERT(digit >= 0 && digit <= 9);
            *output++ = '0' + digit;
            SkASSERT(output <= end);
            if (digit > 0 || significantDigits > 0) {
                // start counting significantDigits after first non-zero digit.
                ++significantDigits;
            }
        } while (fracPart > 0.0
                 && significantDigits < maxSignificantDigits
                 && output < end);
        // When fracPart == 0, additional digits will be zero.
        // When significantDigits == maxSignificantDigits, we can stop.
        // when output == end, we have filed the string.
        // Note: denormalized numbers will not have the same number of
        // significantDigits, but do not need them to round-trip.
    }
    SkASSERT(output <= end);
    *output = '\0';
    return output - result;
}

SkString SkPDFUtils::FormatString(const char* cin, size_t len) {
    SkDEBUGCODE(static const size_t kMaxLen = 65535;)
    SkASSERT(len <= kMaxLen);

    // 7-bit clean is a heuristic to decide what string format to use;
    // a 7-bit clean string should require little escaping.
    bool sevenBitClean = true;
    size_t characterCount = 2 + len;
    for (size_t i = 0; i < len; i++) {
        if (cin[i] > '~' || cin[i] < ' ') {
            sevenBitClean = false;
            break;
        }
        if (cin[i] == '\\' || cin[i] == '(' || cin[i] == ')') {
            ++characterCount;
        }
    }
    SkString result;
    if (sevenBitClean) {
        result.resize(characterCount);
        char* str = result.writable_str();
        *str++ = '(';
        for (size_t i = 0; i < len; i++) {
            if (cin[i] == '\\' || cin[i] == '(' || cin[i] == ')') {
                *str++ = '\\';
            }
            *str++ = cin[i];
        }
        *str++ = ')';
    } else {
        result.resize(2 * len + 2);
        char* str = result.writable_str();
        *str++ = '<';
        for (size_t i = 0; i < len; i++) {
            uint8_t c = static_cast<uint8_t>(cin[i]);
            static const char gHex[] = "0123456789ABCDEF";
            *str++ = gHex[(c >> 4) & 0xF];
            *str++ = gHex[(c     ) & 0xF];
        }
        *str++ = '>';
    }
    return result;
}