1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkPDFShader.h"
#include "SkData.h"
#include "SkPDFCanon.h"
#include "SkPDFDevice.h"
#include "SkPDFFormXObject.h"
#include "SkPDFGraphicState.h"
#include "SkPDFResourceDict.h"
#include "SkPDFUtils.h"
#include "SkScalar.h"
#include "SkStream.h"
#include "SkTemplates.h"
#include "SkTypes.h"
static bool inverse_transform_bbox(const SkMatrix& matrix, SkRect* bbox) {
SkMatrix inverse;
if (!matrix.invert(&inverse)) {
return false;
}
inverse.mapRect(bbox);
return true;
}
static void unitToPointsMatrix(const SkPoint pts[2], SkMatrix* matrix) {
SkVector vec = pts[1] - pts[0];
SkScalar mag = vec.length();
SkScalar inv = mag ? SkScalarInvert(mag) : 0;
vec.scale(inv);
matrix->setSinCos(vec.fY, vec.fX);
matrix->preScale(mag, mag);
matrix->postTranslate(pts[0].fX, pts[0].fY);
}
/* Assumes t + startOffset is on the stack and does a linear interpolation on t
between startOffset and endOffset from prevColor to curColor (for each color
component), leaving the result in component order on the stack. It assumes
there are always 3 components per color.
@param range endOffset - startOffset
@param curColor[components] The current color components.
@param prevColor[components] The previous color components.
@param result The result ps function.
*/
static void interpolateColorCode(SkScalar range, SkScalar* curColor,
SkScalar* prevColor, SkString* result) {
SkASSERT(range != SkIntToScalar(0));
static const int kColorComponents = 3;
// Figure out how to scale each color component.
SkScalar multiplier[kColorComponents];
for (int i = 0; i < kColorComponents; i++) {
multiplier[i] = SkScalarDiv(curColor[i] - prevColor[i], range);
}
// Calculate when we no longer need to keep a copy of the input parameter t.
// If the last component to use t is i, then dupInput[0..i - 1] = true
// and dupInput[i .. components] = false.
bool dupInput[kColorComponents];
dupInput[kColorComponents - 1] = false;
for (int i = kColorComponents - 2; i >= 0; i--) {
dupInput[i] = dupInput[i + 1] || multiplier[i + 1] != 0;
}
if (!dupInput[0] && multiplier[0] == 0) {
result->append("pop ");
}
for (int i = 0; i < kColorComponents; i++) {
// If the next components needs t and this component will consume a
// copy, make another copy.
if (dupInput[i] && multiplier[i] != 0) {
result->append("dup ");
}
if (multiplier[i] == 0) {
result->appendScalar(prevColor[i]);
result->append(" ");
} else {
if (multiplier[i] != 1) {
result->appendScalar(multiplier[i]);
result->append(" mul ");
}
if (prevColor[i] != 0) {
result->appendScalar(prevColor[i]);
result->append(" add ");
}
}
if (dupInput[i]) {
result->append("exch\n");
}
}
}
/* Generate Type 4 function code to map t=[0,1) to the passed gradient,
clamping at the edges of the range. The generated code will be of the form:
if (t < 0) {
return colorData[0][r,g,b];
} else {
if (t < info.fColorOffsets[1]) {
return linearinterpolation(colorData[0][r,g,b],
colorData[1][r,g,b]);
} else {
if (t < info.fColorOffsets[2]) {
return linearinterpolation(colorData[1][r,g,b],
colorData[2][r,g,b]);
} else {
... } else {
return colorData[info.fColorCount - 1][r,g,b];
}
...
}
}
*/
static void gradientFunctionCode(const SkShader::GradientInfo& info,
SkString* result) {
/* We want to linearly interpolate from the previous color to the next.
Scale the colors from 0..255 to 0..1 and determine the multipliers
for interpolation.
C{r,g,b}(t, section) = t - offset_(section-1) + t * Multiplier{r,g,b}.
*/
static const int kColorComponents = 3;
typedef SkScalar ColorTuple[kColorComponents];
SkAutoSTMalloc<4, ColorTuple> colorDataAlloc(info.fColorCount);
ColorTuple *colorData = colorDataAlloc.get();
const SkScalar scale = SkScalarInvert(SkIntToScalar(255));
for (int i = 0; i < info.fColorCount; i++) {
colorData[i][0] = SkScalarMul(SkColorGetR(info.fColors[i]), scale);
colorData[i][1] = SkScalarMul(SkColorGetG(info.fColors[i]), scale);
colorData[i][2] = SkScalarMul(SkColorGetB(info.fColors[i]), scale);
}
// Clamp the initial color.
result->append("dup 0 le {pop ");
result->appendScalar(colorData[0][0]);
result->append(" ");
result->appendScalar(colorData[0][1]);
result->append(" ");
result->appendScalar(colorData[0][2]);
result->append(" }\n");
// The gradient colors.
int gradients = 0;
for (int i = 1 ; i < info.fColorCount; i++) {
if (info.fColorOffsets[i] == info.fColorOffsets[i - 1]) {
continue;
}
gradients++;
result->append("{dup ");
result->appendScalar(info.fColorOffsets[i]);
result->append(" le {");
if (info.fColorOffsets[i - 1] != 0) {
result->appendScalar(info.fColorOffsets[i - 1]);
result->append(" sub\n");
}
interpolateColorCode(info.fColorOffsets[i] - info.fColorOffsets[i - 1],
colorData[i], colorData[i - 1], result);
result->append("}\n");
}
// Clamp the final color.
result->append("{pop ");
result->appendScalar(colorData[info.fColorCount - 1][0]);
result->append(" ");
result->appendScalar(colorData[info.fColorCount - 1][1]);
result->append(" ");
result->appendScalar(colorData[info.fColorCount - 1][2]);
for (int i = 0 ; i < gradients + 1; i++) {
result->append("} ifelse\n");
}
}
/* Map a value of t on the stack into [0, 1) for Repeat or Mirror tile mode. */
static void tileModeCode(SkShader::TileMode mode, SkString* result) {
if (mode == SkShader::kRepeat_TileMode) {
result->append("dup truncate sub\n"); // Get the fractional part.
result->append("dup 0 le {1 add} if\n"); // Map (-1,0) => (0,1)
return;
}
if (mode == SkShader::kMirror_TileMode) {
// Map t mod 2 into [0, 1, 1, 0].
// Code Stack
result->append("abs " // Map negative to positive.
"dup " // t.s t.s
"truncate " // t.s t
"dup " // t.s t t
"cvi " // t.s t T
"2 mod " // t.s t (i mod 2)
"1 eq " // t.s t true|false
"3 1 roll " // true|false t.s t
"sub " // true|false 0.s
"exch " // 0.s true|false
"{1 exch sub} if\n"); // 1 - 0.s|0.s
}
}
/**
* Returns PS function code that applies inverse perspective
* to a x, y point.
* The function assumes that the stack has at least two elements,
* and that the top 2 elements are numeric values.
* After executing this code on a PS stack, the last 2 elements are updated
* while the rest of the stack is preserved intact.
* inversePerspectiveMatrix is the inverse perspective matrix.
*/
static SkString apply_perspective_to_coordinates(
const SkMatrix& inversePerspectiveMatrix) {
SkString code;
if (!inversePerspectiveMatrix.hasPerspective()) {
return code;
}
// Perspective matrix should be:
// 1 0 0
// 0 1 0
// p0 p1 p2
const SkScalar p0 = inversePerspectiveMatrix[SkMatrix::kMPersp0];
const SkScalar p1 = inversePerspectiveMatrix[SkMatrix::kMPersp1];
const SkScalar p2 = inversePerspectiveMatrix[SkMatrix::kMPersp2];
// y = y / (p2 + p0 x + p1 y)
// x = x / (p2 + p0 x + p1 y)
// Input on stack: x y
code.append(" dup "); // x y y
code.appendScalar(p1); // x y y p1
code.append(" mul " // x y y*p1
" 2 index "); // x y y*p1 x
code.appendScalar(p0); // x y y p1 x p0
code.append(" mul "); // x y y*p1 x*p0
code.appendScalar(p2); // x y y p1 x*p0 p2
code.append(" add " // x y y*p1 x*p0+p2
"add " // x y y*p1+x*p0+p2
"3 1 roll " // y*p1+x*p0+p2 x y
"2 index " // z x y y*p1+x*p0+p2
"div " // y*p1+x*p0+p2 x y/(y*p1+x*p0+p2)
"3 1 roll " // y/(y*p1+x*p0+p2) y*p1+x*p0+p2 x
"exch " // y/(y*p1+x*p0+p2) x y*p1+x*p0+p2
"div " // y/(y*p1+x*p0+p2) x/(y*p1+x*p0+p2)
"exch\n"); // x/(y*p1+x*p0+p2) y/(y*p1+x*p0+p2)
return code;
}
static SkString linearCode(const SkShader::GradientInfo& info,
const SkMatrix& perspectiveRemover) {
SkString function("{");
function.append(apply_perspective_to_coordinates(perspectiveRemover));
function.append("pop\n"); // Just ditch the y value.
tileModeCode(info.fTileMode, &function);
gradientFunctionCode(info, &function);
function.append("}");
return function;
}
static SkString radialCode(const SkShader::GradientInfo& info,
const SkMatrix& perspectiveRemover) {
SkString function("{");
function.append(apply_perspective_to_coordinates(perspectiveRemover));
// Find the distance from the origin.
function.append("dup " // x y y
"mul " // x y^2
"exch " // y^2 x
"dup " // y^2 x x
"mul " // y^2 x^2
"add " // y^2+x^2
"sqrt\n"); // sqrt(y^2+x^2)
tileModeCode(info.fTileMode, &function);
gradientFunctionCode(info, &function);
function.append("}");
return function;
}
/* Conical gradient shader, based on the Canvas spec for radial gradients
See: http://www.w3.org/TR/2dcontext/#dom-context-2d-createradialgradient
*/
static SkString twoPointConicalCode(const SkShader::GradientInfo& info,
const SkMatrix& perspectiveRemover) {
SkScalar dx = info.fPoint[1].fX - info.fPoint[0].fX;
SkScalar dy = info.fPoint[1].fY - info.fPoint[0].fY;
SkScalar r0 = info.fRadius[0];
SkScalar dr = info.fRadius[1] - info.fRadius[0];
SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) -
SkScalarMul(dr, dr);
// First compute t, if the pixel falls outside the cone, then we'll end
// with 'false' on the stack, otherwise we'll push 'true' with t below it
// We start with a stack of (x y), copy it and then consume one copy in
// order to calculate b and the other to calculate c.
SkString function("{");
function.append(apply_perspective_to_coordinates(perspectiveRemover));
function.append("2 copy ");
// Calculate b and b^2; b = -2 * (y * dy + x * dx + r0 * dr).
function.appendScalar(dy);
function.append(" mul exch ");
function.appendScalar(dx);
function.append(" mul add ");
function.appendScalar(SkScalarMul(r0, dr));
function.append(" add -2 mul dup dup mul\n");
// c = x^2 + y^2 + radius0^2
function.append("4 2 roll dup mul exch dup mul add ");
function.appendScalar(SkScalarMul(r0, r0));
function.append(" sub dup 4 1 roll\n");
// Contents of the stack at this point: c, b, b^2, c
// if a = 0, then we collapse to a simpler linear case
if (a == 0) {
// t = -c/b
function.append("pop pop div neg dup ");
// compute radius(t)
function.appendScalar(dr);
function.append(" mul ");
function.appendScalar(r0);
function.append(" add\n");
// if r(t) < 0, then it's outside the cone
function.append("0 lt {pop false} {true} ifelse\n");
} else {
// quadratic case: the Canvas spec wants the largest
// root t for which radius(t) > 0
// compute the discriminant (b^2 - 4ac)
function.appendScalar(SkScalarMul(SkIntToScalar(4), a));
function.append(" mul sub dup\n");
// if d >= 0, proceed
function.append("0 ge {\n");
// an intermediate value we'll use to compute the roots:
// q = -0.5 * (b +/- sqrt(d))
function.append("sqrt exch dup 0 lt {exch -1 mul} if");
function.append(" add -0.5 mul dup\n");
// first root = q / a
function.appendScalar(a);
function.append(" div\n");
// second root = c / q
function.append("3 1 roll div\n");
// put the larger root on top of the stack
function.append("2 copy gt {exch} if\n");
// compute radius(t) for larger root
function.append("dup ");
function.appendScalar(dr);
function.append(" mul ");
function.appendScalar(r0);
function.append(" add\n");
// if r(t) > 0, we have our t, pop off the smaller root and we're done
function.append(" 0 gt {exch pop true}\n");
// otherwise, throw out the larger one and try the smaller root
function.append("{pop dup\n");
function.appendScalar(dr);
function.append(" mul ");
function.appendScalar(r0);
function.append(" add\n");
// if r(t) < 0, push false, otherwise the smaller root is our t
function.append("0 le {pop false} {true} ifelse\n");
function.append("} ifelse\n");
// d < 0, clear the stack and push false
function.append("} {pop pop pop false} ifelse\n");
}
// if the pixel is in the cone, proceed to compute a color
function.append("{");
tileModeCode(info.fTileMode, &function);
gradientFunctionCode(info, &function);
// otherwise, just write black
function.append("} {0 0 0} ifelse }");
return function;
}
static SkString sweepCode(const SkShader::GradientInfo& info,
const SkMatrix& perspectiveRemover) {
SkString function("{exch atan 360 div\n");
tileModeCode(info.fTileMode, &function);
gradientFunctionCode(info, &function);
function.append("}");
return function;
}
static void drawBitmapMatrix(SkCanvas* canvas, const SkBitmap& bm, const SkMatrix& matrix) {
SkAutoCanvasRestore acr(canvas, true);
canvas->concat(matrix);
canvas->drawBitmap(bm, 0, 0);
}
class SkPDFShader::State {
public:
SkShader::GradientType fType;
SkShader::GradientInfo fInfo;
SkAutoFree fColorData; // This provides storage for arrays in fInfo.
SkMatrix fCanvasTransform;
SkMatrix fShaderTransform;
SkIRect fBBox;
SkBitmap fImage;
uint32_t fPixelGeneration;
SkShader::TileMode fImageTileModes[2];
State(const SkShader& shader, const SkMatrix& canvasTransform,
const SkIRect& bbox, SkScalar rasterScale);
bool operator==(const State& b) const;
SkPDFShader::State* CreateAlphaToLuminosityState() const;
SkPDFShader::State* CreateOpaqueState() const;
bool GradientHasAlpha() const;
private:
State(const State& other);
State operator=(const State& rhs);
void AllocateGradientInfoStorage();
};
////////////////////////////////////////////////////////////////////////////////
SkPDFFunctionShader::SkPDFFunctionShader(SkPDFShader::State* state)
: SkPDFDict("Pattern"), fShaderState(state) {}
SkPDFFunctionShader::~SkPDFFunctionShader() {}
bool SkPDFFunctionShader::equals(const SkPDFShader::State& state) const {
return state == *fShaderState;
}
////////////////////////////////////////////////////////////////////////////////
SkPDFAlphaFunctionShader::SkPDFAlphaFunctionShader(SkPDFShader::State* state)
: fShaderState(state) {}
bool SkPDFAlphaFunctionShader::equals(const SkPDFShader::State& state) const {
return state == *fShaderState;
}
SkPDFAlphaFunctionShader::~SkPDFAlphaFunctionShader() {}
////////////////////////////////////////////////////////////////////////////////
SkPDFImageShader::SkPDFImageShader(SkPDFShader::State* state)
: fShaderState(state) {}
bool SkPDFImageShader::equals(const SkPDFShader::State& state) const {
return state == *fShaderState;
}
SkPDFImageShader::~SkPDFImageShader() {}
////////////////////////////////////////////////////////////////////////////////
static SkPDFObject* get_pdf_shader_by_state(
SkPDFCanon* canon,
SkScalar dpi,
SkAutoTDelete<SkPDFShader::State>* autoState) {
const SkPDFShader::State& state = **autoState;
if (state.fType == SkShader::kNone_GradientType && state.fImage.isNull()) {
// TODO(vandebo) This drops SKComposeShader on the floor. We could
// handle compose shader by pulling things up to a layer, drawing with
// the first shader, applying the xfer mode and drawing again with the
// second shader, then applying the layer to the original drawing.
return NULL;
} else if (state.fType == SkShader::kNone_GradientType) {
SkPDFObject* shader = canon->findImageShader(state);
return shader ? SkRef(shader)
: SkPDFImageShader::Create(canon, dpi, autoState);
} else if (state.GradientHasAlpha()) {
SkPDFObject* shader = canon->findAlphaShader(state);
return shader ? SkRef(shader)
: SkPDFAlphaFunctionShader::Create(canon, dpi, autoState);
} else {
SkPDFObject* shader = canon->findFunctionShader(state);
return shader ? SkRef(shader)
: SkPDFFunctionShader::Create(canon, autoState);
}
}
// static
SkPDFObject* SkPDFShader::GetPDFShader(SkPDFCanon* canon,
SkScalar dpi,
const SkShader& shader,
const SkMatrix& matrix,
const SkIRect& surfaceBBox,
SkScalar rasterScale) {
SkAutoTDelete<SkPDFShader::State> state(
SkNEW_ARGS(State, (shader, matrix, surfaceBBox, rasterScale)));
return get_pdf_shader_by_state(canon, dpi, &state);
}
static SkPDFDict* get_gradient_resource_dict(
SkPDFObject* functionShader,
SkPDFObject* gState) {
SkTDArray<SkPDFObject*> patterns;
if (functionShader) {
patterns.push(functionShader);
}
SkTDArray<SkPDFObject*> graphicStates;
if (gState) {
graphicStates.push(gState);
}
return SkPDFResourceDict::Create(&graphicStates, &patterns, NULL, NULL);
}
static void populate_tiling_pattern_dict(SkPDFDict* pattern,
SkRect& bbox,
SkPDFDict* resources,
const SkMatrix& matrix) {
const int kTiling_PatternType = 1;
const int kColoredTilingPattern_PaintType = 1;
const int kConstantSpacing_TilingType = 1;
pattern->insertName("Type", "Pattern");
pattern->insertInt("PatternType", kTiling_PatternType);
pattern->insertInt("PaintType", kColoredTilingPattern_PaintType);
pattern->insertInt("TilingType", kConstantSpacing_TilingType);
pattern->insertObject("BBox", SkPDFUtils::RectToArray(bbox));
pattern->insertScalar("XStep", bbox.width());
pattern->insertScalar("YStep", bbox.height());
pattern->insertObject("Resources", SkRef(resources));
if (!matrix.isIdentity()) {
pattern->insertObject("Matrix", SkPDFUtils::MatrixToArray(matrix));
}
}
/**
* Creates a content stream which fills the pattern P0 across bounds.
* @param gsIndex A graphics state resource index to apply, or <0 if no
* graphics state to apply.
*/
static SkStream* create_pattern_fill_content(int gsIndex, SkRect& bounds) {
SkDynamicMemoryWStream content;
if (gsIndex >= 0) {
SkPDFUtils::ApplyGraphicState(gsIndex, &content);
}
SkPDFUtils::ApplyPattern(0, &content);
SkPDFUtils::AppendRectangle(bounds, &content);
SkPDFUtils::PaintPath(SkPaint::kFill_Style, SkPath::kEvenOdd_FillType,
&content);
return content.detachAsStream();
}
/**
* Creates a ExtGState with the SMask set to the luminosityShader in
* luminosity mode. The shader pattern extends to the bbox.
*/
static SkPDFObject* create_smask_graphic_state(
SkPDFCanon* canon, SkScalar dpi, const SkPDFShader::State& state) {
SkRect bbox;
bbox.set(state.fBBox);
SkAutoTDelete<SkPDFShader::State> alphaToLuminosityState(
state.CreateAlphaToLuminosityState());
SkAutoTUnref<SkPDFObject> luminosityShader(
get_pdf_shader_by_state(canon, dpi, &alphaToLuminosityState));
SkAutoTDelete<SkStream> alphaStream(create_pattern_fill_content(-1, bbox));
SkAutoTUnref<SkPDFDict>
resources(get_gradient_resource_dict(luminosityShader, NULL));
SkAutoTUnref<SkPDFFormXObject> alphaMask(
new SkPDFFormXObject(alphaStream.get(), bbox, resources.get()));
return SkPDFGraphicState::GetSMaskGraphicState(
alphaMask.get(), false,
SkPDFGraphicState::kLuminosity_SMaskMode);
}
SkPDFAlphaFunctionShader* SkPDFAlphaFunctionShader::Create(
SkPDFCanon* canon,
SkScalar dpi,
SkAutoTDelete<SkPDFShader::State>* autoState) {
const SkPDFShader::State& state = **autoState;
SkRect bbox;
bbox.set(state.fBBox);
SkAutoTDelete<SkPDFShader::State> opaqueState(state.CreateOpaqueState());
SkAutoTUnref<SkPDFObject> colorShader(
get_pdf_shader_by_state(canon, dpi, &opaqueState));
if (!colorShader) {
return NULL;
}
// Create resource dict with alpha graphics state as G0 and
// pattern shader as P0, then write content stream.
SkAutoTUnref<SkPDFObject> alphaGs(
create_smask_graphic_state(canon, dpi, state));
SkPDFAlphaFunctionShader* alphaFunctionShader =
SkNEW_ARGS(SkPDFAlphaFunctionShader, (autoState->detach()));
SkAutoTUnref<SkPDFDict> resourceDict(
get_gradient_resource_dict(colorShader.get(), alphaGs.get()));
SkAutoTDelete<SkStream> colorStream(
create_pattern_fill_content(0, bbox));
alphaFunctionShader->setData(colorStream.get());
populate_tiling_pattern_dict(alphaFunctionShader, bbox, resourceDict.get(),
SkMatrix::I());
canon->addAlphaShader(alphaFunctionShader);
return alphaFunctionShader;
}
// Finds affine and persp such that in = affine * persp.
// but it returns the inverse of perspective matrix.
static bool split_perspective(const SkMatrix in, SkMatrix* affine,
SkMatrix* perspectiveInverse) {
const SkScalar p2 = in[SkMatrix::kMPersp2];
if (SkScalarNearlyZero(p2)) {
return false;
}
const SkScalar zero = SkIntToScalar(0);
const SkScalar one = SkIntToScalar(1);
const SkScalar sx = in[SkMatrix::kMScaleX];
const SkScalar kx = in[SkMatrix::kMSkewX];
const SkScalar tx = in[SkMatrix::kMTransX];
const SkScalar ky = in[SkMatrix::kMSkewY];
const SkScalar sy = in[SkMatrix::kMScaleY];
const SkScalar ty = in[SkMatrix::kMTransY];
const SkScalar p0 = in[SkMatrix::kMPersp0];
const SkScalar p1 = in[SkMatrix::kMPersp1];
// Perspective matrix would be:
// 1 0 0
// 0 1 0
// p0 p1 p2
// But we need the inverse of persp.
perspectiveInverse->setAll(one, zero, zero,
zero, one, zero,
-p0/p2, -p1/p2, 1/p2);
affine->setAll(sx - p0 * tx / p2, kx - p1 * tx / p2, tx / p2,
ky - p0 * ty / p2, sy - p1 * ty / p2, ty / p2,
zero, zero, one);
return true;
}
namespace {
SkPDFObject* create_range_object() {
SkPDFArray* range = SkNEW(SkPDFArray);
range->reserve(6);
range->appendInt(0);
range->appendInt(1);
range->appendInt(0);
range->appendInt(1);
range->appendInt(0);
range->appendInt(1);
return range;
}
template <typename T> void unref(T* ptr) { ptr->unref();}
} // namespace
SK_DECLARE_STATIC_LAZY_PTR(SkPDFObject, rangeObject,
create_range_object, unref<SkPDFObject>);
static SkPDFStream* make_ps_function(const SkString& psCode,
SkPDFArray* domain) {
SkAutoDataUnref funcData(
SkData::NewWithCopy(psCode.c_str(), psCode.size()));
SkPDFStream* result = SkNEW_ARGS(SkPDFStream, (funcData.get()));
result->insertInt("FunctionType", 4);
result->insertObject("Domain", SkRef(domain));
result->insertObject("Range", SkRef(rangeObject.get()));
return result;
}
SkPDFFunctionShader* SkPDFFunctionShader::Create(
SkPDFCanon* canon, SkAutoTDelete<SkPDFShader::State>* autoState) {
const SkPDFShader::State& state = **autoState;
SkString (*codeFunction)(const SkShader::GradientInfo& info,
const SkMatrix& perspectiveRemover) = NULL;
SkPoint transformPoints[2];
// Depending on the type of the gradient, we want to transform the
// coordinate space in different ways.
const SkShader::GradientInfo* info = &state.fInfo;
transformPoints[0] = info->fPoint[0];
transformPoints[1] = info->fPoint[1];
switch (state.fType) {
case SkShader::kLinear_GradientType:
codeFunction = &linearCode;
break;
case SkShader::kRadial_GradientType:
transformPoints[1] = transformPoints[0];
transformPoints[1].fX += info->fRadius[0];
codeFunction = &radialCode;
break;
case SkShader::kConical_GradientType: {
transformPoints[1] = transformPoints[0];
transformPoints[1].fX += SK_Scalar1;
codeFunction = &twoPointConicalCode;
break;
}
case SkShader::kSweep_GradientType:
transformPoints[1] = transformPoints[0];
transformPoints[1].fX += SK_Scalar1;
codeFunction = &sweepCode;
break;
case SkShader::kColor_GradientType:
case SkShader::kNone_GradientType:
default:
return NULL;
}
// Move any scaling (assuming a unit gradient) or translation
// (and rotation for linear gradient), of the final gradient from
// info->fPoints to the matrix (updating bbox appropriately). Now
// the gradient can be drawn on on the unit segment.
SkMatrix mapperMatrix;
unitToPointsMatrix(transformPoints, &mapperMatrix);
SkMatrix finalMatrix = state.fCanvasTransform;
finalMatrix.preConcat(state.fShaderTransform);
finalMatrix.preConcat(mapperMatrix);
// Preserves as much as posible in the final matrix, and only removes
// the perspective. The inverse of the perspective is stored in
// perspectiveInverseOnly matrix and has 3 useful numbers
// (p0, p1, p2), while everything else is either 0 or 1.
// In this way the shader will handle it eficiently, with minimal code.
SkMatrix perspectiveInverseOnly = SkMatrix::I();
if (finalMatrix.hasPerspective()) {
if (!split_perspective(finalMatrix,
&finalMatrix, &perspectiveInverseOnly)) {
return NULL;
}
}
SkRect bbox;
bbox.set(state.fBBox);
if (!inverse_transform_bbox(finalMatrix, &bbox)) {
return NULL;
}
SkAutoTUnref<SkPDFArray> domain(new SkPDFArray);
domain->reserve(4);
domain->appendScalar(bbox.fLeft);
domain->appendScalar(bbox.fRight);
domain->appendScalar(bbox.fTop);
domain->appendScalar(bbox.fBottom);
SkString functionCode;
// The two point radial gradient further references
// state.fInfo
// in translating from x, y coordinates to the t parameter. So, we have
// to transform the points and radii according to the calculated matrix.
if (state.fType == SkShader::kConical_GradientType) {
SkShader::GradientInfo twoPointRadialInfo = *info;
SkMatrix inverseMapperMatrix;
if (!mapperMatrix.invert(&inverseMapperMatrix)) {
return NULL;
}
inverseMapperMatrix.mapPoints(twoPointRadialInfo.fPoint, 2);
twoPointRadialInfo.fRadius[0] =
inverseMapperMatrix.mapRadius(info->fRadius[0]);
twoPointRadialInfo.fRadius[1] =
inverseMapperMatrix.mapRadius(info->fRadius[1]);
functionCode = codeFunction(twoPointRadialInfo, perspectiveInverseOnly);
} else {
functionCode = codeFunction(*info, perspectiveInverseOnly);
}
SkAutoTUnref<SkPDFDict> pdfShader(new SkPDFDict);
pdfShader->insertInt("ShadingType", 1);
pdfShader->insertName("ColorSpace", "DeviceRGB");
pdfShader->insertObject("Domain", SkRef(domain.get()));
SkAutoTUnref<SkPDFStream> function(
make_ps_function(functionCode, domain.get()));
pdfShader->insertObjRef("Function", function.detach());
SkPDFFunctionShader* pdfFunctionShader =
SkNEW_ARGS(SkPDFFunctionShader, (autoState->detach()));
pdfFunctionShader->insertInt("PatternType", 2);
pdfFunctionShader->insertObject("Matrix",
SkPDFUtils::MatrixToArray(finalMatrix));
pdfFunctionShader->insertObject("Shading", pdfShader.detach());
canon->addFunctionShader(pdfFunctionShader);
return pdfFunctionShader;
}
SkPDFImageShader* SkPDFImageShader::Create(
SkPDFCanon* canon,
SkScalar dpi,
SkAutoTDelete<SkPDFShader::State>* autoState) {
const SkPDFShader::State& state = **autoState;
state.fImage.lockPixels();
// The image shader pattern cell will be drawn into a separate device
// in pattern cell space (no scaling on the bitmap, though there may be
// translations so that all content is in the device, coordinates > 0).
// Map clip bounds to shader space to ensure the device is large enough
// to handle fake clamping.
SkMatrix finalMatrix = state.fCanvasTransform;
finalMatrix.preConcat(state.fShaderTransform);
SkRect deviceBounds;
deviceBounds.set(state.fBBox);
if (!inverse_transform_bbox(finalMatrix, &deviceBounds)) {
return NULL;
}
const SkBitmap* image = &state.fImage;
SkRect bitmapBounds;
image->getBounds(&bitmapBounds);
// For tiling modes, the bounds should be extended to include the bitmap,
// otherwise the bitmap gets clipped out and the shader is empty and awful.
// For clamp modes, we're only interested in the clip region, whether
// or not the main bitmap is in it.
SkShader::TileMode tileModes[2];
tileModes[0] = state.fImageTileModes[0];
tileModes[1] = state.fImageTileModes[1];
if (tileModes[0] != SkShader::kClamp_TileMode ||
tileModes[1] != SkShader::kClamp_TileMode) {
deviceBounds.join(bitmapBounds);
}
SkISize size = SkISize::Make(SkScalarRoundToInt(deviceBounds.width()),
SkScalarRoundToInt(deviceBounds.height()));
SkAutoTUnref<SkPDFDevice> patternDevice(
SkPDFDevice::CreateUnflipped(size, dpi, canon));
SkCanvas canvas(patternDevice.get());
SkRect patternBBox;
image->getBounds(&patternBBox);
// Translate the canvas so that the bitmap origin is at (0, 0).
canvas.translate(-deviceBounds.left(), -deviceBounds.top());
patternBBox.offset(-deviceBounds.left(), -deviceBounds.top());
// Undo the translation in the final matrix
finalMatrix.preTranslate(deviceBounds.left(), deviceBounds.top());
// If the bitmap is out of bounds (i.e. clamp mode where we only see the
// stretched sides), canvas will clip this out and the extraneous data
// won't be saved to the PDF.
canvas.drawBitmap(*image, 0, 0);
SkScalar width = SkIntToScalar(image->width());
SkScalar height = SkIntToScalar(image->height());
// Tiling is implied. First we handle mirroring.
if (tileModes[0] == SkShader::kMirror_TileMode) {
SkMatrix xMirror;
xMirror.setScale(-1, 1);
xMirror.postTranslate(2 * width, 0);
drawBitmapMatrix(&canvas, *image, xMirror);
patternBBox.fRight += width;
}
if (tileModes[1] == SkShader::kMirror_TileMode) {
SkMatrix yMirror;
yMirror.setScale(SK_Scalar1, -SK_Scalar1);
yMirror.postTranslate(0, 2 * height);
drawBitmapMatrix(&canvas, *image, yMirror);
patternBBox.fBottom += height;
}
if (tileModes[0] == SkShader::kMirror_TileMode &&
tileModes[1] == SkShader::kMirror_TileMode) {
SkMatrix mirror;
mirror.setScale(-1, -1);
mirror.postTranslate(2 * width, 2 * height);
drawBitmapMatrix(&canvas, *image, mirror);
}
// Then handle Clamping, which requires expanding the pattern canvas to
// cover the entire surfaceBBox.
// If both x and y are in clamp mode, we start by filling in the corners.
// (Which are just a rectangles of the corner colors.)
if (tileModes[0] == SkShader::kClamp_TileMode &&
tileModes[1] == SkShader::kClamp_TileMode) {
SkPaint paint;
SkRect rect;
rect = SkRect::MakeLTRB(deviceBounds.left(), deviceBounds.top(), 0, 0);
if (!rect.isEmpty()) {
paint.setColor(image->getColor(0, 0));
canvas.drawRect(rect, paint);
}
rect = SkRect::MakeLTRB(width, deviceBounds.top(),
deviceBounds.right(), 0);
if (!rect.isEmpty()) {
paint.setColor(image->getColor(image->width() - 1, 0));
canvas.drawRect(rect, paint);
}
rect = SkRect::MakeLTRB(width, height,
deviceBounds.right(), deviceBounds.bottom());
if (!rect.isEmpty()) {
paint.setColor(image->getColor(image->width() - 1,
image->height() - 1));
canvas.drawRect(rect, paint);
}
rect = SkRect::MakeLTRB(deviceBounds.left(), height,
0, deviceBounds.bottom());
if (!rect.isEmpty()) {
paint.setColor(image->getColor(0, image->height() - 1));
canvas.drawRect(rect, paint);
}
}
// Then expand the left, right, top, then bottom.
if (tileModes[0] == SkShader::kClamp_TileMode) {
SkIRect subset = SkIRect::MakeXYWH(0, 0, 1, image->height());
if (deviceBounds.left() < 0) {
SkBitmap left;
SkAssertResult(image->extractSubset(&left, subset));
SkMatrix leftMatrix;
leftMatrix.setScale(-deviceBounds.left(), 1);
leftMatrix.postTranslate(deviceBounds.left(), 0);
drawBitmapMatrix(&canvas, left, leftMatrix);
if (tileModes[1] == SkShader::kMirror_TileMode) {
leftMatrix.postScale(SK_Scalar1, -SK_Scalar1);
leftMatrix.postTranslate(0, 2 * height);
drawBitmapMatrix(&canvas, left, leftMatrix);
}
patternBBox.fLeft = 0;
}
if (deviceBounds.right() > width) {
SkBitmap right;
subset.offset(image->width() - 1, 0);
SkAssertResult(image->extractSubset(&right, subset));
SkMatrix rightMatrix;
rightMatrix.setScale(deviceBounds.right() - width, 1);
rightMatrix.postTranslate(width, 0);
drawBitmapMatrix(&canvas, right, rightMatrix);
if (tileModes[1] == SkShader::kMirror_TileMode) {
rightMatrix.postScale(SK_Scalar1, -SK_Scalar1);
rightMatrix.postTranslate(0, 2 * height);
drawBitmapMatrix(&canvas, right, rightMatrix);
}
patternBBox.fRight = deviceBounds.width();
}
}
if (tileModes[1] == SkShader::kClamp_TileMode) {
SkIRect subset = SkIRect::MakeXYWH(0, 0, image->width(), 1);
if (deviceBounds.top() < 0) {
SkBitmap top;
SkAssertResult(image->extractSubset(&top, subset));
SkMatrix topMatrix;
topMatrix.setScale(SK_Scalar1, -deviceBounds.top());
topMatrix.postTranslate(0, deviceBounds.top());
drawBitmapMatrix(&canvas, top, topMatrix);
if (tileModes[0] == SkShader::kMirror_TileMode) {
topMatrix.postScale(-1, 1);
topMatrix.postTranslate(2 * width, 0);
drawBitmapMatrix(&canvas, top, topMatrix);
}
patternBBox.fTop = 0;
}
if (deviceBounds.bottom() > height) {
SkBitmap bottom;
subset.offset(0, image->height() - 1);
SkAssertResult(image->extractSubset(&bottom, subset));
SkMatrix bottomMatrix;
bottomMatrix.setScale(SK_Scalar1, deviceBounds.bottom() - height);
bottomMatrix.postTranslate(0, height);
drawBitmapMatrix(&canvas, bottom, bottomMatrix);
if (tileModes[0] == SkShader::kMirror_TileMode) {
bottomMatrix.postScale(-1, 1);
bottomMatrix.postTranslate(2 * width, 0);
drawBitmapMatrix(&canvas, bottom, bottomMatrix);
}
patternBBox.fBottom = deviceBounds.height();
}
}
// Put the canvas into the pattern stream (fContent).
SkAutoTDelete<SkStreamAsset> content(patternDevice->content());
SkPDFImageShader* imageShader =
SkNEW_ARGS(SkPDFImageShader, (autoState->detach()));
imageShader->setData(content.get());
SkAutoTUnref<SkPDFDict> resourceDict(
patternDevice->createResourceDict());
populate_tiling_pattern_dict(imageShader, patternBBox,
resourceDict.get(), finalMatrix);
imageShader->fShaderState->fImage.unlockPixels();
canon->addImageShader(imageShader);
return imageShader;
}
bool SkPDFShader::State::operator==(const SkPDFShader::State& b) const {
if (fType != b.fType ||
fCanvasTransform != b.fCanvasTransform ||
fShaderTransform != b.fShaderTransform ||
fBBox != b.fBBox) {
return false;
}
if (fType == SkShader::kNone_GradientType) {
if (fPixelGeneration != b.fPixelGeneration ||
fPixelGeneration == 0 ||
fImageTileModes[0] != b.fImageTileModes[0] ||
fImageTileModes[1] != b.fImageTileModes[1]) {
return false;
}
} else {
if (fInfo.fColorCount != b.fInfo.fColorCount ||
memcmp(fInfo.fColors, b.fInfo.fColors,
sizeof(SkColor) * fInfo.fColorCount) != 0 ||
memcmp(fInfo.fColorOffsets, b.fInfo.fColorOffsets,
sizeof(SkScalar) * fInfo.fColorCount) != 0 ||
fInfo.fPoint[0] != b.fInfo.fPoint[0] ||
fInfo.fTileMode != b.fInfo.fTileMode) {
return false;
}
switch (fType) {
case SkShader::kLinear_GradientType:
if (fInfo.fPoint[1] != b.fInfo.fPoint[1]) {
return false;
}
break;
case SkShader::kRadial_GradientType:
if (fInfo.fRadius[0] != b.fInfo.fRadius[0]) {
return false;
}
break;
case SkShader::kConical_GradientType:
if (fInfo.fPoint[1] != b.fInfo.fPoint[1] ||
fInfo.fRadius[0] != b.fInfo.fRadius[0] ||
fInfo.fRadius[1] != b.fInfo.fRadius[1]) {
return false;
}
break;
case SkShader::kSweep_GradientType:
case SkShader::kNone_GradientType:
case SkShader::kColor_GradientType:
break;
}
}
return true;
}
SkPDFShader::State::State(const SkShader& shader, const SkMatrix& canvasTransform,
const SkIRect& bbox, SkScalar rasterScale)
: fCanvasTransform(canvasTransform),
fBBox(bbox),
fPixelGeneration(0) {
fInfo.fColorCount = 0;
fInfo.fColors = NULL;
fInfo.fColorOffsets = NULL;
fShaderTransform = shader.getLocalMatrix();
fImageTileModes[0] = fImageTileModes[1] = SkShader::kClamp_TileMode;
fType = shader.asAGradient(&fInfo);
if (fType == SkShader::kNone_GradientType) {
SkShader::BitmapType bitmapType;
SkMatrix matrix;
bitmapType = shader.asABitmap(&fImage, &matrix, fImageTileModes);
if (bitmapType != SkShader::kDefault_BitmapType) {
// Generic fallback for unsupported shaders:
// * allocate a bbox-sized bitmap
// * shade the whole area
// * use the result as a bitmap shader
// bbox is in device space. While that's exactly what we want for sizing our bitmap,
// we need to map it into shader space for adjustments (to match
// SkPDFImageShader::Create's behavior).
SkRect shaderRect = SkRect::Make(bbox);
if (!inverse_transform_bbox(canvasTransform, &shaderRect)) {
fImage.reset();
return;
}
// Clamp the bitmap size to about 1M pixels
static const SkScalar kMaxBitmapArea = 1024 * 1024;
SkScalar bitmapArea = rasterScale * bbox.width() * rasterScale * bbox.height();
if (bitmapArea > kMaxBitmapArea) {
rasterScale *= SkScalarSqrt(SkScalarDiv(kMaxBitmapArea, bitmapArea));
}
SkISize size = SkISize::Make(SkScalarRoundToInt(rasterScale * bbox.width()),
SkScalarRoundToInt(rasterScale * bbox.height()));
SkSize scale = SkSize::Make(SkIntToScalar(size.width()) / shaderRect.width(),
SkIntToScalar(size.height()) / shaderRect.height());
fImage.allocN32Pixels(size.width(), size.height());
fImage.eraseColor(SK_ColorTRANSPARENT);
SkPaint p;
p.setShader(const_cast<SkShader*>(&shader));
SkCanvas canvas(fImage);
canvas.scale(scale.width(), scale.height());
canvas.translate(-shaderRect.x(), -shaderRect.y());
canvas.drawPaint(p);
fShaderTransform.setTranslate(shaderRect.x(), shaderRect.y());
fShaderTransform.preScale(1 / scale.width(), 1 / scale.height());
} else {
SkASSERT(matrix.isIdentity());
}
fPixelGeneration = fImage.getGenerationID();
} else {
AllocateGradientInfoStorage();
shader.asAGradient(&fInfo);
}
}
SkPDFShader::State::State(const SkPDFShader::State& other)
: fType(other.fType),
fCanvasTransform(other.fCanvasTransform),
fShaderTransform(other.fShaderTransform),
fBBox(other.fBBox)
{
// Only gradients supported for now, since that is all that is used.
// If needed, image state copy constructor can be added here later.
SkASSERT(fType != SkShader::kNone_GradientType);
if (fType != SkShader::kNone_GradientType) {
fInfo = other.fInfo;
AllocateGradientInfoStorage();
for (int i = 0; i < fInfo.fColorCount; i++) {
fInfo.fColors[i] = other.fInfo.fColors[i];
fInfo.fColorOffsets[i] = other.fInfo.fColorOffsets[i];
}
}
}
/**
* Create a copy of this gradient state with alpha assigned to RGB luminousity.
* Only valid for gradient states.
*/
SkPDFShader::State* SkPDFShader::State::CreateAlphaToLuminosityState() const {
SkASSERT(fType != SkShader::kNone_GradientType);
SkPDFShader::State* newState = new SkPDFShader::State(*this);
for (int i = 0; i < fInfo.fColorCount; i++) {
SkAlpha alpha = SkColorGetA(fInfo.fColors[i]);
newState->fInfo.fColors[i] = SkColorSetARGB(255, alpha, alpha, alpha);
}
return newState;
}
/**
* Create a copy of this gradient state with alpha set to fully opaque
* Only valid for gradient states.
*/
SkPDFShader::State* SkPDFShader::State::CreateOpaqueState() const {
SkASSERT(fType != SkShader::kNone_GradientType);
SkPDFShader::State* newState = new SkPDFShader::State(*this);
for (int i = 0; i < fInfo.fColorCount; i++) {
newState->fInfo.fColors[i] = SkColorSetA(fInfo.fColors[i],
SK_AlphaOPAQUE);
}
return newState;
}
/**
* Returns true if state is a gradient and the gradient has alpha.
*/
bool SkPDFShader::State::GradientHasAlpha() const {
if (fType == SkShader::kNone_GradientType) {
return false;
}
for (int i = 0; i < fInfo.fColorCount; i++) {
SkAlpha alpha = SkColorGetA(fInfo.fColors[i]);
if (alpha != SK_AlphaOPAQUE) {
return true;
}
}
return false;
}
void SkPDFShader::State::AllocateGradientInfoStorage() {
fColorData.set(sk_malloc_throw(
fInfo.fColorCount * (sizeof(SkColor) + sizeof(SkScalar))));
fInfo.fColors = reinterpret_cast<SkColor*>(fColorData.get());
fInfo.fColorOffsets =
reinterpret_cast<SkScalar*>(fInfo.fColors + fInfo.fColorCount);
}
|