aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/pdf/SkPDFImage.cpp
blob: ed204550e76ee87c866c2e783b7695e65b1d5b47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
/*
 * Copyright 2010 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkPDFImage.h"

#include "SkBitmap.h"
#include "SkColor.h"
#include "SkColorPriv.h"
#include "SkData.h"
#include "SkFlate.h"
#include "SkPDFCatalog.h"
#include "SkRect.h"
#include "SkStream.h"
#include "SkString.h"
#include "SkUnPreMultiply.h"

static const int kNoColorTransform = 0;

static bool skip_compression(SkPDFCatalog* catalog) {
    return SkToBool(catalog->getDocumentFlags() &
                    SkPDFDocument::kFavorSpeedOverSize_Flags);
}

static size_t get_uncompressed_size(const SkBitmap& bitmap,
                                    const SkIRect& srcRect) {
    switch (bitmap.getConfig()) {
        case SkBitmap::kIndex8_Config:
            return srcRect.width() * srcRect.height();
        case SkBitmap::kARGB_4444_Config:
            return ((srcRect.width() * 3 + 1) / 2) * srcRect.height();
        case SkBitmap::kRGB_565_Config:
            return srcRect.width() * 3 * srcRect.height();
        case SkBitmap::kARGB_8888_Config:
            return srcRect.width() * 3 * srcRect.height();
        case SkBitmap::kA1_Config:
        case SkBitmap::kA8_Config:
            return 1;
        default:
            SkASSERT(false);
            return 0;
    }
}

static SkStream* extract_index8_image(const SkBitmap& bitmap,
                                      const SkIRect& srcRect) {
    const int rowBytes = srcRect.width();
    SkStream* stream = SkNEW_ARGS(SkMemoryStream,
                                  (get_uncompressed_size(bitmap, srcRect)));
    uint8_t* dst = (uint8_t*)stream->getMemoryBase();

    for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
        memcpy(dst, bitmap.getAddr8(srcRect.fLeft, y), rowBytes);
        dst += rowBytes;
    }
    return stream;
}

static SkStream* extract_argb4444_data(const SkBitmap& bitmap,
                                       const SkIRect& srcRect,
                                       bool extractAlpha,
                                       bool* isOpaque,
                                       bool* isTransparent) {
    SkStream* stream;
    uint8_t* dst = NULL;
    if (extractAlpha) {
        const int alphaRowBytes = (srcRect.width() + 1) / 2;
        stream = SkNEW_ARGS(SkMemoryStream,
                            (alphaRowBytes * srcRect.height()));
    } else {
        stream = SkNEW_ARGS(SkMemoryStream,
                            (get_uncompressed_size(bitmap, srcRect)));
    }
    dst = (uint8_t*)stream->getMemoryBase();

    for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
        uint16_t* src = bitmap.getAddr16(0, y);
        int x;
        for (x = srcRect.fLeft; x + 1 < srcRect.fRight; x += 2) {
            if (extractAlpha) {
                dst[0] = (SkGetPackedA4444(src[x]) << 4) |
                    SkGetPackedA4444(src[x + 1]);
                *isOpaque &= dst[0] == SK_AlphaOPAQUE;
                *isTransparent &= dst[0] == SK_AlphaTRANSPARENT;
                dst++;
            } else {
                dst[0] = (SkGetPackedR4444(src[x]) << 4) |
                    SkGetPackedG4444(src[x]);
                dst[1] = (SkGetPackedB4444(src[x]) << 4) |
                    SkGetPackedR4444(src[x + 1]);
                dst[2] = (SkGetPackedG4444(src[x + 1]) << 4) |
                    SkGetPackedB4444(src[x + 1]);
                dst += 3;
            }
        }
        if (srcRect.width() & 1) {
            if (extractAlpha) {
                dst[0] = (SkGetPackedA4444(src[x]) << 4);
                *isOpaque &= dst[0] == (SK_AlphaOPAQUE & 0xF0);
                *isTransparent &= dst[0] == (SK_AlphaTRANSPARENT & 0xF0);
                dst++;

            } else {
                dst[0] = (SkGetPackedR4444(src[x]) << 4) |
                    SkGetPackedG4444(src[x]);
                dst[1] = (SkGetPackedB4444(src[x]) << 4);
                dst += 2;
            }
        }
    }
    return stream;
}

static SkStream* extract_rgb565_image(const SkBitmap& bitmap,
                                      const SkIRect& srcRect) {
    SkStream* stream = SkNEW_ARGS(SkMemoryStream,
                                  (get_uncompressed_size(bitmap,
                                                     srcRect)));
    uint8_t* dst = (uint8_t*)stream->getMemoryBase();
    for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
        uint16_t* src = bitmap.getAddr16(0, y);
        for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
            dst[0] = SkGetPackedR16(src[x]);
            dst[1] = SkGetPackedG16(src[x]);
            dst[2] = SkGetPackedB16(src[x]);
            dst += 3;
        }
    }
    return stream;
}

static SkStream* extract_argb8888_data(const SkBitmap& bitmap,
                                       const SkIRect& srcRect,
                                       bool extractAlpha,
                                       bool* isOpaque,
                                       bool* isTransparent) {
    SkStream* stream;
    if (extractAlpha) {
        stream = SkNEW_ARGS(SkMemoryStream,
                            (srcRect.width() * srcRect.height()));
    } else {
        stream = SkNEW_ARGS(SkMemoryStream,
                            (get_uncompressed_size(bitmap, srcRect)));
    }
    uint8_t* dst = (uint8_t*)stream->getMemoryBase();

    for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
        uint32_t* src = bitmap.getAddr32(0, y);
        for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
            if (extractAlpha) {
                dst[0] = SkGetPackedA32(src[x]);
                *isOpaque &= dst[0] == SK_AlphaOPAQUE;
                *isTransparent &= dst[0] == SK_AlphaTRANSPARENT;
                dst++;
            } else {
                dst[0] = SkGetPackedR32(src[x]);
                dst[1] = SkGetPackedG32(src[x]);
                dst[2] = SkGetPackedB32(src[x]);
                dst += 3;
            }
        }
    }
    return stream;
}

static SkStream* extract_a1_alpha(const SkBitmap& bitmap,
                                  const SkIRect& srcRect,
                                  bool* isOpaque,
                                  bool* isTransparent) {
    const int alphaRowBytes = (srcRect.width() + 7) / 8;
    SkStream* stream = SkNEW_ARGS(SkMemoryStream,
                                  (alphaRowBytes * srcRect.height()));
    uint8_t* alphaDst = (uint8_t*)stream->getMemoryBase();

    int offset1 = srcRect.fLeft % 8;
    int offset2 = 8 - offset1;

    for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
        uint8_t* src = bitmap.getAddr1(0, y);
        // This may read up to one byte after src, but the
        // potentially invalid bits are never used for computation.
        for (int x = srcRect.fLeft; x < srcRect.fRight; x += 8)  {
            if (offset1) {
                alphaDst[0] = src[x / 8] << offset1 |
                    src[x / 8 + 1] >> offset2;
            } else {
                alphaDst[0] = src[x / 8];
            }
            if (x + 7 < srcRect.fRight) {
                *isOpaque &= alphaDst[0] == SK_AlphaOPAQUE;
                *isTransparent &= alphaDst[0] == SK_AlphaTRANSPARENT;
            }
            alphaDst++;
        }
        // Calculate the mask of bits we're interested in within the
        // last byte of alphaDst.
        // width mod 8  == 1 -> 0x80 ... width mod 8 == 7 -> 0xFE
        uint8_t mask = ~((1 << (8 - (srcRect.width() % 8))) - 1);
        if (srcRect.width() % 8) {
            *isOpaque &= (alphaDst[-1] & mask) == (SK_AlphaOPAQUE & mask);
            *isTransparent &=
                    (alphaDst[-1] & mask) == (SK_AlphaTRANSPARENT & mask);
        }
    }
    return stream;
}

static SkStream* extract_a8_alpha(const SkBitmap& bitmap,
                                  const SkIRect& srcRect,
                                  bool* isOpaque,
                                  bool* isTransparent) {
    const int alphaRowBytes = srcRect.width();
    SkStream* stream = SkNEW_ARGS(SkMemoryStream,
                                  (alphaRowBytes * srcRect.height()));
    uint8_t* alphaDst = (uint8_t*)stream->getMemoryBase();

    for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
        uint8_t* src = bitmap.getAddr8(0, y);
        for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
            alphaDst[0] = src[x];
            *isOpaque &= alphaDst[0] == SK_AlphaOPAQUE;
            *isTransparent &= alphaDst[0] == SK_AlphaTRANSPARENT;
            alphaDst++;
        }
    }
    return stream;
}

static SkStream* create_black_image() {
    SkStream* stream = SkNEW_ARGS(SkMemoryStream, (1));
    ((uint8_t*)stream->getMemoryBase())[0] = 0;
    return stream;
}

/**
 * Extract either the color or image data from a SkBitmap into a SkStream.
 * @param bitmap        Bitmap to extract data from.
 * @param srcRect       Region in the bitmap to extract.
 * @param extractAlpha  Set to true to extract the alpha data or false to
 *                      extract the color data.
 * @param isTransparent Pointer to a bool to output whether the alpha is
 *                      completely transparent. May be NULL. Only valid when
 *                      extractAlpha == true.
 * @return              Unencoded image data, or NULL if either data was not
 *                      available or alpha data was requested but the image was
 *                      entirely transparent or opaque.
 */
static SkStream* extract_image_data(const SkBitmap& bitmap,
                                    const SkIRect& srcRect,
                                    bool extractAlpha, bool* isTransparent) {
    SkBitmap::Config config = bitmap.config();
    if (extractAlpha && (config == SkBitmap::kIndex8_Config ||
            config == SkBitmap::kRGB_565_Config)) {
        if (isTransparent != NULL) {
            *isTransparent = false;
        }
        return NULL;
    }
    bool isOpaque = true;
    bool transparent = extractAlpha;
    SkStream* stream = NULL;

    bitmap.lockPixels();
    switch (config) {
        case SkBitmap::kIndex8_Config:
            if (!extractAlpha) {
                stream = extract_index8_image(bitmap, srcRect);
            }
            break;
        case SkBitmap::kARGB_4444_Config:
            stream = extract_argb4444_data(bitmap, srcRect, extractAlpha,
                                           &isOpaque, &transparent);
            break;
        case SkBitmap::kRGB_565_Config:
            if (!extractAlpha) {
                stream = extract_rgb565_image(bitmap, srcRect);
            }
            break;
        case SkBitmap::kARGB_8888_Config:
            stream = extract_argb8888_data(bitmap, srcRect, extractAlpha,
                                           &isOpaque, &transparent);
            break;
        case SkBitmap::kA1_Config:
            if (!extractAlpha) {
                stream = create_black_image();
            } else {
                stream = extract_a1_alpha(bitmap, srcRect,
                                          &isOpaque, &transparent);
            }
            break;
        case SkBitmap::kA8_Config:
            if (!extractAlpha) {
                stream = create_black_image();
            } else {
                stream = extract_a8_alpha(bitmap, srcRect,
                                          &isOpaque, &transparent);
            }
            break;
        default:
            SkASSERT(false);
    }
    bitmap.unlockPixels();

    if (isTransparent != NULL) {
        *isTransparent = transparent;
    }
    if (extractAlpha && (transparent || isOpaque)) {
        SkSafeUnref(stream);
        return NULL;
    }
    return stream;
}

static SkPDFArray* make_indexed_color_space(SkColorTable* table) {
    SkPDFArray* result = new SkPDFArray();
    result->reserve(4);
    result->appendName("Indexed");
    result->appendName("DeviceRGB");
    result->appendInt(table->count() - 1);

    // Potentially, this could be represented in fewer bytes with a stream.
    // Max size as a string is 1.5k.
    SkString index;
    for (int i = 0; i < table->count(); i++) {
        char buf[3];
        SkColor color = SkUnPreMultiply::PMColorToColor((*table)[i]);
        buf[0] = SkGetPackedR32(color);
        buf[1] = SkGetPackedG32(color);
        buf[2] = SkGetPackedB32(color);
        index.append(buf, 3);
    }
    result->append(new SkPDFString(index))->unref();
    return result;
}

/**
 * Removes the alpha component of an ARGB color (including unpremultiply) while
 * keeping the output in the same format as the input.
 */
static uint32_t remove_alpha_argb8888(uint32_t pmColor) {
    SkColor color = SkUnPreMultiply::PMColorToColor(pmColor);
    return SkPackARGB32NoCheck(SK_AlphaOPAQUE,
                               SkColorGetR(color),
                               SkColorGetG(color),
                               SkColorGetB(color));
}

static uint16_t remove_alpha_argb4444(uint16_t pmColor) {
    return SkPixel32ToPixel4444(
            remove_alpha_argb8888(SkPixel4444ToPixel32(pmColor)));
}

static uint32_t get_argb8888_neighbor_avg_color(const SkBitmap& bitmap,
                                                int xOrig, int yOrig) {
    uint8_t count = 0;
    uint16_t r = 0;
    uint16_t g = 0;
    uint16_t b = 0;

    for (int y = yOrig - 1; y <= yOrig + 1; y++) {
        if (y < 0 || y >= bitmap.height()) {
            continue;
        }
        uint32_t* src = bitmap.getAddr32(0, y);
        for (int x = xOrig - 1; x <= xOrig + 1; x++) {
            if (x < 0 || x >= bitmap.width()) {
                continue;
            }
            if (SkGetPackedA32(src[x]) != SK_AlphaTRANSPARENT) {
                uint32_t color = remove_alpha_argb8888(src[x]);
                r += SkGetPackedR32(color);
                g += SkGetPackedG32(color);
                b += SkGetPackedB32(color);
                count++;
            }
        }
    }

    if (count == 0) {
        return SkPackARGB32NoCheck(SK_AlphaOPAQUE, 0, 0, 0);
    } else {
        return SkPackARGB32NoCheck(SK_AlphaOPAQUE,
                                   r / count, g / count, b / count);
    }
}

static uint16_t get_argb4444_neighbor_avg_color(const SkBitmap& bitmap,
                                                int xOrig, int yOrig) {
    uint8_t count = 0;
    uint8_t r = 0;
    uint8_t g = 0;
    uint8_t b = 0;

    for (int y = yOrig - 1; y <= yOrig + 1; y++) {
        if (y < 0 || y >= bitmap.height()) {
            continue;
        }
        uint16_t* src = bitmap.getAddr16(0, y);
        for (int x = xOrig - 1; x <= xOrig + 1; x++) {
            if (x < 0 || x >= bitmap.width()) {
                continue;
            }
            if ((SkGetPackedA4444(src[x]) & 0x0F) != SK_AlphaTRANSPARENT) {
                uint16_t color = remove_alpha_argb4444(src[x]);
                r += SkGetPackedR4444(color);
                g += SkGetPackedG4444(color);
                b += SkGetPackedB4444(color);
                count++;
            }
        }
    }

    if (count == 0) {
        return SkPackARGB4444(SK_AlphaOPAQUE & 0x0F, 0, 0, 0);
    } else {
        return SkPackARGB4444(SK_AlphaOPAQUE & 0x0F,
                                   r / count, g / count, b / count);
    }
}

static SkBitmap unpremultiply_bitmap(const SkBitmap& bitmap,
                                     const SkIRect& srcRect) {
    SkBitmap outBitmap;
    outBitmap.setConfig(bitmap.config(), srcRect.width(), srcRect.height());
    outBitmap.allocPixels();
    size_t dstRow = 0;

    outBitmap.lockPixels();
    bitmap.lockPixels();
    switch (bitmap.config()) {
        case SkBitmap::kARGB_4444_Config: {
            for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
                uint16_t* dst = outBitmap.getAddr16(0, dstRow);
                uint16_t* src = bitmap.getAddr16(0, y);
                for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
                    uint8_t a = SkGetPackedA4444(src[x]);
                    // It is necessary to average the color component of
                    // transparent pixels with their surrounding neighbors
                    // since the PDF renderer may separately re-sample the
                    // alpha and color channels when the image is not
                    // displayed at its native resolution. Since an alpha of
                    // zero gives no information about the color component,
                    // the pathological case is a white image with sharp
                    // transparency bounds - the color channel goes to black,
                    // and the should-be-transparent pixels are rendered
                    // as grey because of the separate soft mask and color
                    // resizing.
                    if (a == (SK_AlphaTRANSPARENT & 0x0F)) {
                        *dst = get_argb4444_neighbor_avg_color(bitmap, x, y);
                    } else {
                        *dst = remove_alpha_argb4444(src[x]);
                    }
                    dst++;
                }
                dstRow++;
            }
            break;
        }
        case SkBitmap::kARGB_8888_Config: {
            for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
                uint32_t* dst = outBitmap.getAddr32(0, dstRow);
                uint32_t* src = bitmap.getAddr32(0, y);
                for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
                    uint8_t a = SkGetPackedA32(src[x]);
                    if (a == SK_AlphaTRANSPARENT) {
                        *dst = get_argb8888_neighbor_avg_color(bitmap, x, y);
                    } else {
                        *dst = remove_alpha_argb8888(src[x]);
                    }
                    dst++;
                }
                dstRow++;
            }
            break;
        }
        default:
            SkASSERT(false);
    }
    bitmap.unlockPixels();
    outBitmap.unlockPixels();

    outBitmap.setImmutable();

    return outBitmap;
}

// static
SkPDFImage* SkPDFImage::CreateImage(const SkBitmap& bitmap,
                                    const SkIRect& srcRect,
                                    SkPicture::EncodeBitmap encoder) {
    if (bitmap.getConfig() == SkBitmap::kNo_Config) {
        return NULL;
    }

    bool isTransparent = false;
    SkAutoTUnref<SkStream> alphaData;
    if (!bitmap.isOpaque()) {
        // Note that isOpaque is not guaranteed to return false for bitmaps
        // with alpha support but a completely opaque alpha channel,
        // so alphaData may still be NULL if we have a completely opaque
        // (or transparent) bitmap.
        alphaData.reset(
                extract_image_data(bitmap, srcRect, true, &isTransparent));
    }
    if (isTransparent) {
        return NULL;
    }

    SkPDFImage* image;
    SkBitmap::Config config = bitmap.config();
    if (alphaData.get() != NULL && (config == SkBitmap::kARGB_8888_Config ||
            config == SkBitmap::kARGB_4444_Config)) {
        SkBitmap unpremulBitmap = unpremultiply_bitmap(bitmap, srcRect);
        image = SkNEW_ARGS(SkPDFImage, (NULL, unpremulBitmap, false,
                           SkIRect::MakeWH(srcRect.width(), srcRect.height()),
                           encoder));
    } else {
        image = SkNEW_ARGS(SkPDFImage, (NULL, bitmap, false, srcRect, encoder));
    }
    if (alphaData.get() != NULL) {
        SkAutoTUnref<SkPDFImage> mask(
                SkNEW_ARGS(SkPDFImage, (alphaData.get(), bitmap,
                                        true, srcRect, NULL)));
        image->addSMask(mask);
    }

    return image;
}

SkPDFImage::~SkPDFImage() {
    fResources.unrefAll();
}

SkPDFImage* SkPDFImage::addSMask(SkPDFImage* mask) {
    fResources.push(mask);
    mask->ref();
    insert("SMask", new SkPDFObjRef(mask))->unref();
    return mask;
}

void SkPDFImage::getResources(const SkTSet<SkPDFObject*>& knownResourceObjects,
                              SkTSet<SkPDFObject*>* newResourceObjects) {
    GetResourcesHelper(&fResources, knownResourceObjects, newResourceObjects);
}

SkPDFImage::SkPDFImage(SkStream* stream,
                       const SkBitmap& bitmap,
                       bool isAlpha,
                       const SkIRect& srcRect,
                       SkPicture::EncodeBitmap encoder)
    : fIsAlpha(isAlpha),
      fSrcRect(srcRect),
      fEncoder(encoder) {

    if (bitmap.isImmutable()) {
        fBitmap = bitmap;
    } else {
        bitmap.deepCopyTo(&fBitmap, bitmap.config());
        fBitmap.setImmutable();
    }

    if (stream != NULL) {
        setData(stream);
        fStreamValid = true;
    } else {
        fStreamValid = false;
    }

    SkBitmap::Config config = fBitmap.getConfig();

    insertName("Type", "XObject");
    insertName("Subtype", "Image");

    bool alphaOnly = (config == SkBitmap::kA1_Config ||
                      config == SkBitmap::kA8_Config);

    if (!isAlpha && alphaOnly) {
        // For alpha only images, we stretch a single pixel of black for
        // the color/shape part.
        SkAutoTUnref<SkPDFInt> one(new SkPDFInt(1));
        insert("Width", one.get());
        insert("Height", one.get());
    } else {
        insertInt("Width", fSrcRect.width());
        insertInt("Height", fSrcRect.height());
    }

    if (isAlpha || alphaOnly) {
        insertName("ColorSpace", "DeviceGray");
    } else if (config == SkBitmap::kIndex8_Config) {
        SkAutoLockPixels alp(fBitmap);
        insert("ColorSpace",
               make_indexed_color_space(fBitmap.getColorTable()))->unref();
    } else {
        insertName("ColorSpace", "DeviceRGB");
    }

    int bitsPerComp = 8;
    if (config == SkBitmap::kARGB_4444_Config) {
        bitsPerComp = 4;
    } else if (isAlpha && config == SkBitmap::kA1_Config) {
        bitsPerComp = 1;
    }
    insertInt("BitsPerComponent", bitsPerComp);

    if (config == SkBitmap::kRGB_565_Config) {
        SkASSERT(!isAlpha);
        SkAutoTUnref<SkPDFInt> zeroVal(new SkPDFInt(0));
        SkAutoTUnref<SkPDFScalar> scale5Val(
                new SkPDFScalar(SkFloatToScalar(8.2258f)));  // 255/2^5-1
        SkAutoTUnref<SkPDFScalar> scale6Val(
                new SkPDFScalar(SkFloatToScalar(4.0476f)));  // 255/2^6-1
        SkAutoTUnref<SkPDFArray> decodeValue(new SkPDFArray());
        decodeValue->reserve(6);
        decodeValue->append(zeroVal.get());
        decodeValue->append(scale5Val.get());
        decodeValue->append(zeroVal.get());
        decodeValue->append(scale6Val.get());
        decodeValue->append(zeroVal.get());
        decodeValue->append(scale5Val.get());
        insert("Decode", decodeValue.get());
    }
}

SkPDFImage::SkPDFImage(SkPDFImage& pdfImage)
    : SkPDFStream(pdfImage),
      fBitmap(pdfImage.fBitmap),
      fIsAlpha(pdfImage.fIsAlpha),
      fSrcRect(pdfImage.fSrcRect),
      fEncoder(pdfImage.fEncoder),
      fStreamValid(pdfImage.fStreamValid) {
    // Nothing to do here - the image params are already copied in SkPDFStream's
    // constructor, and the bitmap will be regenerated and encoded in
    // populate.
}

bool SkPDFImage::populate(SkPDFCatalog* catalog) {
    if (getState() == kUnused_State) {
        // Initializing image data for the first time.
        SkDynamicMemoryWStream dctCompressedWStream;
        if (!skip_compression(catalog) && fEncoder &&
                get_uncompressed_size(fBitmap, fSrcRect) > 1) {
            SkBitmap subset;
            // Extract subset
            if (!fBitmap.extractSubset(&subset, fSrcRect)) {
                // TODO(edisonn) It fails only for kA1_Config, if that is a
                // major concern we will fix it later, so far it is NYI.
                return false;
            }
            size_t pixelRefOffset = 0;
            SkAutoTUnref<SkData> data(fEncoder(&pixelRefOffset, subset));
            if (data.get() && data->size() < get_uncompressed_size(fBitmap,
                                                                   fSrcRect)) {
                SkAutoTUnref<SkStream> stream(SkNEW_ARGS(SkMemoryStream,
                                                         (data)));
                setData(stream.get());

                insertName("Filter", "DCTDecode");
                insertInt("ColorTransform", kNoColorTransform);
                insertInt("Length", getData()->getLength());
                setState(kCompressed_State);
                return true;
            }
        }
        // Fallback method
        if (!fStreamValid) {
            SkAutoTUnref<SkStream> stream(
                    extract_image_data(fBitmap, fSrcRect, fIsAlpha, NULL));
            setData(stream);
            fStreamValid = true;
        }
        return INHERITED::populate(catalog);
    } else if (getState() == kNoCompression_State &&
            !skip_compression(catalog) &&
            (SkFlate::HaveFlate() || fEncoder)) {
        // Compression has not been requested when the stream was first created,
        // but the new catalog wants it compressed.
        if (!getSubstitute()) {
            SkPDFStream* substitute = SkNEW_ARGS(SkPDFImage, (*this));
            setSubstitute(substitute);
            catalog->setSubstitute(this, substitute);
        }
        return false;
    }
    return true;
}