aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/pdf/SkPDFBitmap.cpp
blob: 887bca4ab0f427b5e845e821d64f19099ca59ec6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkColorPriv.h"
#include "SkData.h"
#include "SkDeflate.h"
#include "SkImage_Base.h"
#include "SkJpegInfo.h"
#include "SkPDFBitmap.h"
#include "SkPDFCanon.h"
#include "SkPDFTypes.h"
#include "SkStream.h"
#include "SkUnPreMultiply.h"

void image_get_ro_pixels(const SkImage* image, SkBitmap* dst) {
    if(as_IB(image)->getROPixels(dst)
       && dst->dimensions() == image->dimensions()) {
        if (dst->colorType() != kIndex_8_SkColorType) {
            return;
        }
        // We must check to see if the bitmap has a color table.
        SkAutoLockPixels autoLockPixels(*dst);
        if (!dst->getColorTable()) {
            // We can't use an indexed bitmap with no colortable.
            dst->reset();
        } else {
            return;
        }
    }
    // no pixels or wrong size: fill with zeros.
    SkAlphaType at = image->isOpaque() ? kOpaque_SkAlphaType : kPremul_SkAlphaType;
    dst->setInfo(SkImageInfo::MakeN32(image->width(), image->height(), at));
}

bool image_compute_is_opaque(const SkImage* image) {
    if (image->isOpaque()) {
        return true;
    }
    // keep output PDF small at cost of possible resource use.
    SkBitmap bm;
    image_get_ro_pixels(image, &bm);
    return SkBitmap::ComputeIsOpaque(bm);
}

////////////////////////////////////////////////////////////////////////////////

static void pdf_stream_begin(SkWStream* stream) {
    static const char streamBegin[] = " stream\n";
    stream->write(streamBegin, strlen(streamBegin));
}

static void pdf_stream_end(SkWStream* stream) {
    static const char streamEnd[] = "\nendstream";
    stream->write(streamEnd, strlen(streamEnd));
}

////////////////////////////////////////////////////////////////////////////////

// write a single byte to a stream n times.
static void fill_stream(SkWStream* out, char value, size_t n) {
    char buffer[4096];
    memset(buffer, value, sizeof(buffer));
    for (size_t i = 0; i < n / sizeof(buffer); ++i) {
        out->write(buffer, sizeof(buffer));
    }
    out->write(buffer, n % sizeof(buffer));
}

// TODO(reed@): Decide if these five functions belong in SkColorPriv.h
static bool SkIsBGRA(SkColorType ct) {
    SkASSERT(kBGRA_8888_SkColorType == ct || kRGBA_8888_SkColorType == ct);
    return kBGRA_8888_SkColorType == ct;
}

// Interpret value as the given 4-byte SkColorType (BGRA_8888 or
// RGBA_8888) and return the appropriate component.  Each component
// should be interpreted according to the associated SkAlphaType and
// SkColorProfileType.
static U8CPU SkGetA32Component(uint32_t value, SkColorType ct) {
    return (value >> (SkIsBGRA(ct) ? SK_BGRA_A32_SHIFT : SK_RGBA_A32_SHIFT)) & 0xFF;
}
static U8CPU SkGetR32Component(uint32_t value, SkColorType ct) {
    return (value >> (SkIsBGRA(ct) ? SK_BGRA_R32_SHIFT : SK_RGBA_R32_SHIFT)) & 0xFF;
}
static U8CPU SkGetG32Component(uint32_t value, SkColorType ct) {
    return (value >> (SkIsBGRA(ct) ? SK_BGRA_G32_SHIFT : SK_RGBA_G32_SHIFT)) & 0xFF;
}
static U8CPU SkGetB32Component(uint32_t value, SkColorType ct) {
    return (value >> (SkIsBGRA(ct) ? SK_BGRA_B32_SHIFT : SK_RGBA_B32_SHIFT)) & 0xFF;
}

// unpremultiply and extract R, G, B components.
static void pmcolor_to_rgb24(uint32_t color, uint8_t* rgb, SkColorType ct) {
    uint32_t s = SkUnPreMultiply::GetScale(SkGetA32Component(color, ct));
    rgb[0] = SkUnPreMultiply::ApplyScale(s, SkGetR32Component(color, ct));
    rgb[1] = SkUnPreMultiply::ApplyScale(s, SkGetG32Component(color, ct));
    rgb[2] = SkUnPreMultiply::ApplyScale(s, SkGetB32Component(color, ct));
}

/* It is necessary to average the color component of transparent
   pixels with their surrounding neighbors since the PDF renderer may
   separately re-sample the alpha and color channels when the image is
   not displayed at its native resolution. Since an alpha of zero
   gives no information about the color component, the pathological
   case is a white image with sharp transparency bounds - the color
   channel goes to black, and the should-be-transparent pixels are
   rendered as grey because of the separate soft mask and color
   resizing. e.g.: gm/bitmappremul.cpp */
static void get_neighbor_avg_color(const SkBitmap& bm,
                                   int xOrig,
                                   int yOrig,
                                   uint8_t rgb[3],
                                   SkColorType ct) {
    unsigned a = 0, r = 0, g = 0, b = 0;
    // Clamp the range to the edge of the bitmap.
    int ymin = SkTMax(0, yOrig - 1);
    int ymax = SkTMin(yOrig + 1, bm.height() - 1);
    int xmin = SkTMax(0, xOrig - 1);
    int xmax = SkTMin(xOrig + 1, bm.width() - 1);
    for (int y = ymin; y <= ymax; ++y) {
        uint32_t* scanline = bm.getAddr32(0, y);
        for (int x = xmin; x <= xmax; ++x) {
            uint32_t color = scanline[x];
            a += SkGetA32Component(color, ct);
            r += SkGetR32Component(color, ct);
            g += SkGetG32Component(color, ct);
            b += SkGetB32Component(color, ct);
        }
    }
    if (a > 0) {
        rgb[0] = SkToU8(255 * r / a);
        rgb[1] = SkToU8(255 * g / a);
        rgb[2] = SkToU8(255 * b / a);
    } else {
        rgb[0] = rgb[1] = rgb[2] = 0;
    }
}

static size_t pixel_count(const SkBitmap& bm) {
    return SkToSizeT(bm.width()) * SkToSizeT(bm.height());
}

static const SkBitmap& not4444(const SkBitmap& input, SkBitmap* copy) {
    if (input.colorType() != kARGB_4444_SkColorType) {
        return input;
    }
    // ARGB_4444 is rarely used, so we can do a wasteful tmp copy.
    SkAssertResult(input.copyTo(copy, kN32_SkColorType));
    copy->setImmutable();
    return *copy;
}

static size_t pdf_color_component_count(SkColorType ct) {
    switch (ct) {
        case kRGB_565_SkColorType:
        case kARGB_4444_SkColorType:
        case kRGBA_8888_SkColorType:
        case kBGRA_8888_SkColorType:
            return 3;
        case kAlpha_8_SkColorType:
        case kIndex_8_SkColorType:
        case kGray_8_SkColorType:
            return 1;
        case kUnknown_SkColorType:
        default:
            SkDEBUGFAIL("unexpected color type");
            return 0;
    }
}

static void bitmap_to_pdf_pixels(const SkBitmap& bitmap, SkWStream* out) {
    if (!bitmap.getPixels()) {
        size_t size = pixel_count(bitmap) *
                      pdf_color_component_count(bitmap.colorType());
        fill_stream(out, '\x00', size);
        return;
    }
    SkBitmap copy;
    const SkBitmap& bm = not4444(bitmap, &copy);
    SkAutoLockPixels autoLockPixels(bm);
    SkColorType colorType = bm.colorType();
    SkAlphaType alphaType = bm.alphaType();
    switch (colorType) {
        case kRGBA_8888_SkColorType:
        case kBGRA_8888_SkColorType: {
            SkASSERT(3 == pdf_color_component_count(colorType));
            SkAutoTMalloc<uint8_t> scanline(3 * bm.width());
            for (int y = 0; y < bm.height(); ++y) {
                const uint32_t* src = bm.getAddr32(0, y);
                uint8_t* dst = scanline.get();
                for (int x = 0; x < bm.width(); ++x) {
                    if (alphaType == kPremul_SkAlphaType) {
                        uint32_t color = *src++;
                        U8CPU alpha = SkGetA32Component(color, colorType);
                        if (alpha != SK_AlphaTRANSPARENT) {
                            pmcolor_to_rgb24(color, dst, colorType);
                        } else {
                            get_neighbor_avg_color(bm, x, y, dst, colorType);
                        }
                        dst += 3;
                    } else {
                        uint32_t color = *src++;
                        *dst++ = SkGetR32Component(color, colorType);
                        *dst++ = SkGetG32Component(color, colorType);
                        *dst++ = SkGetB32Component(color, colorType);
                    }
                }
                out->write(scanline.get(), 3 * bm.width());
            }
            return;
        }
        case kRGB_565_SkColorType: {
            SkASSERT(3 == pdf_color_component_count(colorType));
            SkAutoTMalloc<uint8_t> scanline(3 * bm.width());
            for (int y = 0; y < bm.height(); ++y) {
                const uint16_t* src = bm.getAddr16(0, y);
                uint8_t* dst = scanline.get();
                for (int x = 0; x < bm.width(); ++x) {
                    U16CPU color565 = *src++;
                    *dst++ = SkPacked16ToR32(color565);
                    *dst++ = SkPacked16ToG32(color565);
                    *dst++ = SkPacked16ToB32(color565);
                }
                out->write(scanline.get(), 3 * bm.width());
            }
            return;
        }
        case kAlpha_8_SkColorType:
            SkASSERT(1 == pdf_color_component_count(colorType));
            fill_stream(out, '\x00', pixel_count(bm));
            return;
        case kGray_8_SkColorType:
        case kIndex_8_SkColorType:
            SkASSERT(1 == pdf_color_component_count(colorType));
            // these two formats need no transformation to serialize.
            for (int y = 0; y < bm.height(); ++y) {
                out->write(bm.getAddr8(0, y), bm.width());
            }
            return;
        case kUnknown_SkColorType:
        case kARGB_4444_SkColorType:
        default:
            SkDEBUGFAIL("unexpected color type");
    }
}

////////////////////////////////////////////////////////////////////////////////

static void bitmap_alpha_to_a8(const SkBitmap& bitmap, SkWStream* out) {
    if (!bitmap.getPixels()) {
        fill_stream(out, '\xFF', pixel_count(bitmap));
        return;
    }
    SkBitmap copy;
    const SkBitmap& bm = not4444(bitmap, &copy);
    SkAutoLockPixels autoLockPixels(bm);
    SkColorType colorType = bm.colorType();
    switch (colorType) {
        case kRGBA_8888_SkColorType:
        case kBGRA_8888_SkColorType: {
            SkAutoTMalloc<uint8_t> scanline(bm.width());
            for (int y = 0; y < bm.height(); ++y) {
                uint8_t* dst = scanline.get();
                const SkPMColor* src = bm.getAddr32(0, y);
                for (int x = 0; x < bm.width(); ++x) {
                    *dst++ = SkGetA32Component(*src++, colorType);
                }
                out->write(scanline.get(), bm.width());
            }
            return;
        }
        case kAlpha_8_SkColorType:
            for (int y = 0; y < bm.height(); ++y) {
                out->write(bm.getAddr8(0, y), bm.width());
            }
            return;
        case kIndex_8_SkColorType: {
            SkColorTable* ct = bm.getColorTable();
            SkASSERT(ct);
            SkAutoTMalloc<uint8_t> scanline(bm.width());
            for (int y = 0; y < bm.height(); ++y) {
                uint8_t* dst = scanline.get();
                const uint8_t* src = bm.getAddr8(0, y);
                for (int x = 0; x < bm.width(); ++x) {
                    *dst++ = SkGetPackedA32((*ct)[*src++]);
                }
                out->write(scanline.get(), bm.width());
            }
            return;
        }
        case kRGB_565_SkColorType:
        case kGray_8_SkColorType:
            SkDEBUGFAIL("color type has no alpha");
            return;
        case kARGB_4444_SkColorType:
            SkDEBUGFAIL("4444 color type should have been converted to N32");
            return;
        case kUnknown_SkColorType:
        default:
            SkDEBUGFAIL("unexpected color type");
    }
}

static sk_sp<SkPDFArray> make_indexed_color_space(
        const SkColorTable* table,
        SkAlphaType alphaType) {
    auto result = sk_make_sp<SkPDFArray>();
    result->reserve(4);
    result->appendName("Indexed");
    result->appendName("DeviceRGB");
    SkASSERT(table);
    if (table->count() < 1) {
        result->appendInt(0);
        char shortTableArray[3] = {0, 0, 0};
        SkString tableString(shortTableArray, SK_ARRAY_COUNT(shortTableArray));
        result->appendString(tableString);
        return result;
    }
    result->appendInt(table->count() - 1);  // maximum color index.

    // Potentially, this could be represented in fewer bytes with a stream.
    // Max size as a string is 1.5k.
    char tableArray[256 * 3];
    SkASSERT(3u * table->count() <= SK_ARRAY_COUNT(tableArray));
    uint8_t* tablePtr = reinterpret_cast<uint8_t*>(tableArray);
    const SkPMColor* colors = table->readColors();
    for (int i = 0; i < table->count(); i++) {
        if (alphaType == kPremul_SkAlphaType) {
            pmcolor_to_rgb24(colors[i], tablePtr, kN32_SkColorType);
            tablePtr += 3;
        } else {
            *tablePtr++ = SkGetR32Component(colors[i], kN32_SkColorType);
            *tablePtr++ = SkGetG32Component(colors[i], kN32_SkColorType);
            *tablePtr++ = SkGetB32Component(colors[i], kN32_SkColorType);
        }
    }
    SkString tableString(tableArray, 3 * table->count());
    result->appendString(tableString);
    return result;
}

static void emit_image_xobject(SkWStream* stream,
                               const SkImage* image,
                               bool alpha,
                               const sk_sp<SkPDFObject>& smask,
                               const SkPDFObjNumMap& objNumMap,
                               const SkPDFSubstituteMap& substitutes) {
    SkBitmap bitmap;
    image_get_ro_pixels(image, &bitmap);      // TODO(halcanary): test
    SkAutoLockPixels autoLockPixels(bitmap);  // with malformed images.

    // Write to a temporary buffer to get the compressed length.
    SkDynamicMemoryWStream buffer;
    SkDeflateWStream deflateWStream(&buffer);
    if (alpha) {
        bitmap_alpha_to_a8(bitmap, &deflateWStream);
    } else {
        bitmap_to_pdf_pixels(bitmap, &deflateWStream);
    }
    deflateWStream.finalize();  // call before detachAsStream().
    std::unique_ptr<SkStreamAsset> asset(buffer.detachAsStream());

    SkPDFDict pdfDict("XObject");
    pdfDict.insertName("Subtype", "Image");
    pdfDict.insertInt("Width", bitmap.width());
    pdfDict.insertInt("Height", bitmap.height());
    if (alpha) {
        pdfDict.insertName("ColorSpace", "DeviceGray");
    } else if (bitmap.colorType() == kIndex_8_SkColorType) {
        SkASSERT(1 == pdf_color_component_count(bitmap.colorType()));
        pdfDict.insertObject("ColorSpace",
                             make_indexed_color_space(bitmap.getColorTable(),
                                                      bitmap.alphaType()));
    } else if (1 == pdf_color_component_count(bitmap.colorType())) {
        pdfDict.insertName("ColorSpace", "DeviceGray");
    } else {
        pdfDict.insertName("ColorSpace", "DeviceRGB");
    }
    if (smask) {
        pdfDict.insertObjRef("SMask", smask);
    }
    pdfDict.insertInt("BitsPerComponent", 8);
    pdfDict.insertName("Filter", "FlateDecode");
    pdfDict.insertInt("Length", asset->getLength());
    pdfDict.emitObject(stream, objNumMap, substitutes);

    pdf_stream_begin(stream);
    stream->writeStream(asset.get(), asset->getLength());
    pdf_stream_end(stream);
}

////////////////////////////////////////////////////////////////////////////////

namespace {
// This SkPDFObject only outputs the alpha layer of the given bitmap.
class PDFAlphaBitmap final : public SkPDFObject {
public:
    PDFAlphaBitmap(sk_sp<SkImage> image) : fImage(std::move(image)) { SkASSERT(fImage); }
    void emitObject(SkWStream*  stream,
                    const SkPDFObjNumMap& objNumMap,
                    const SkPDFSubstituteMap& subs) const override {
        SkASSERT(fImage);
        emit_image_xobject(stream, fImage.get(), true, nullptr, objNumMap, subs);
    }
    void drop() override { fImage = nullptr; }

private:
    sk_sp<SkImage> fImage;
};

}  // namespace

////////////////////////////////////////////////////////////////////////////////

namespace {
class PDFDefaultBitmap final : public SkPDFObject {
public:
    void emitObject(SkWStream* stream,
                    const SkPDFObjNumMap& objNumMap,
                    const SkPDFSubstituteMap& subs) const override {
        SkASSERT(fImage);
        emit_image_xobject(stream, fImage.get(), false, fSMask, objNumMap, subs);
    }
    void addResources(SkPDFObjNumMap* catalog,
                      const SkPDFSubstituteMap& subs) const override {
        SkASSERT(fImage);
        if (fSMask.get()) {
            SkPDFObject* obj = subs.getSubstitute(fSMask.get());
            SkASSERT(obj);
            catalog->addObjectRecursively(obj, subs);
        }
    }
    void drop() override { fImage = nullptr; fSMask = nullptr; }
    PDFDefaultBitmap(sk_sp<SkImage> image, sk_sp<SkPDFObject> smask)
        : fImage(std::move(image)), fSMask(std::move(smask)) { SkASSERT(fImage); }

private:
    sk_sp<SkImage> fImage;
    sk_sp<SkPDFObject> fSMask;
};
}  // namespace

////////////////////////////////////////////////////////////////////////////////

namespace {
/**
 *  This PDFObject assumes that its constructor was handed YUV or
 *  Grayscale JFIF Jpeg-encoded data that can be directly embedded
 *  into a PDF.
 */
class PDFJpegBitmap final : public SkPDFObject {
public:
    SkISize fSize;
    sk_sp<SkData> fData;
    bool fIsYUV;
    PDFJpegBitmap(SkISize size, SkData* data, bool isYUV)
        : fSize(size), fData(SkRef(data)), fIsYUV(isYUV) { SkASSERT(data); }
    void emitObject(SkWStream*,
                    const SkPDFObjNumMap&,
                    const SkPDFSubstituteMap&) const override;
    void drop() override { fData = nullptr; }
};

void PDFJpegBitmap::emitObject(SkWStream* stream,
                               const SkPDFObjNumMap& objNumMap,
                               const SkPDFSubstituteMap& substituteMap) const {
    SkASSERT(fData);
    SkPDFDict pdfDict("XObject");
    pdfDict.insertName("Subtype", "Image");
    pdfDict.insertInt("Width", fSize.width());
    pdfDict.insertInt("Height", fSize.height());
    if (fIsYUV) {
        pdfDict.insertName("ColorSpace", "DeviceRGB");
    } else {
        pdfDict.insertName("ColorSpace", "DeviceGray");
    }
    pdfDict.insertInt("BitsPerComponent", 8);
    pdfDict.insertName("Filter", "DCTDecode");
    pdfDict.insertInt("ColorTransform", 0);
    pdfDict.insertInt("Length", SkToInt(fData->size()));
    pdfDict.emitObject(stream, objNumMap, substituteMap);
    pdf_stream_begin(stream);
    stream->write(fData->data(), fData->size());
    pdf_stream_end(stream);
}
}  // namespace

////////////////////////////////////////////////////////////////////////////////

sk_sp<SkPDFObject> SkPDFCreateBitmapObject(sk_sp<SkImage> image,
                                           SkPixelSerializer* pixelSerializer) {
    SkASSERT(image);
    sk_sp<SkData> data(image->refEncoded());
    SkJFIFInfo info;
    if (data && SkIsJFIF(data.get(), &info) &&
        (!pixelSerializer ||
         pixelSerializer->useEncodedData(data->data(), data->size()))) {
        // If there is a SkPixelSerializer, give it a chance to
        // re-encode the JPEG with more compression by returning false
        // from useEncodedData.
        bool yuv = info.fType == SkJFIFInfo::kYCbCr;
        if (info.fSize == image->dimensions()) {  // Sanity check.
            // hold on to data, not image.
            #ifdef SK_PDF_IMAGE_STATS
            gJpegImageObjects.fetch_add(1);
            #endif
            return sk_make_sp<PDFJpegBitmap>(info.fSize, data.get(), yuv);
        }
    }

    if (pixelSerializer) {
        SkBitmap bm;
        SkAutoPixmapUnlock apu;
        if (as_IB(image.get())->getROPixels(&bm) && bm.requestLock(&apu)) {
            data.reset(pixelSerializer->encode(apu.pixmap()));
            if (data && SkIsJFIF(data.get(), &info)) {
                bool yuv = info.fType == SkJFIFInfo::kYCbCr;
                if (info.fSize == image->dimensions()) {  // Sanity check.
                    return sk_make_sp<PDFJpegBitmap>(info.fSize, data.get(), yuv);
                }
            }
        }
    }

    sk_sp<SkPDFObject> smask;
    if (!image_compute_is_opaque(image.get())) {
        smask = sk_make_sp<PDFAlphaBitmap>(image);
    }
    #ifdef SK_PDF_IMAGE_STATS
    gRegularImageObjects.fetch_add(1);
    #endif
    return sk_make_sp<PDFDefaultBitmap>(std::move(image), std::move(smask));
}