1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkReduceOrder.h"
int SkReduceOrder::reduce(const SkDLine& line) {
fLine[0] = line[0];
int different = line[0] != line[1];
fLine[1] = line[different];
return 1 + different;
}
static int coincident_line(const SkDQuad& quad, SkDQuad& reduction) {
reduction[0] = reduction[1] = quad[0];
return 1;
}
static int reductionLineCount(const SkDQuad& reduction) {
return 1 + !reduction[0].approximatelyEqual(reduction[1]);
}
static int vertical_line(const SkDQuad& quad, SkDQuad& reduction) {
reduction[0] = quad[0];
reduction[1] = quad[2];
return reductionLineCount(reduction);
}
static int horizontal_line(const SkDQuad& quad, SkDQuad& reduction) {
reduction[0] = quad[0];
reduction[1] = quad[2];
return reductionLineCount(reduction);
}
static int check_linear(const SkDQuad& quad,
int minX, int maxX, int minY, int maxY, SkDQuad& reduction) {
int startIndex = 0;
int endIndex = 2;
while (quad[startIndex].approximatelyEqual(quad[endIndex])) {
--endIndex;
if (endIndex == 0) {
SkDebugf("%s shouldn't get here if all four points are about equal", __FUNCTION__);
SkASSERT(0);
}
}
if (!quad.isLinear(startIndex, endIndex)) {
return 0;
}
// four are colinear: return line formed by outside
reduction[0] = quad[0];
reduction[1] = quad[2];
return reductionLineCount(reduction);
}
// reduce to a quadratic or smaller
// look for identical points
// look for all four points in a line
// note that three points in a line doesn't simplify a cubic
// look for approximation with single quadratic
// save approximation with multiple quadratics for later
int SkReduceOrder::reduce(const SkDQuad& quad) {
int index, minX, maxX, minY, maxY;
int minXSet, minYSet;
minX = maxX = minY = maxY = 0;
minXSet = minYSet = 0;
for (index = 1; index < 3; ++index) {
if (quad[minX].fX > quad[index].fX) {
minX = index;
}
if (quad[minY].fY > quad[index].fY) {
minY = index;
}
if (quad[maxX].fX < quad[index].fX) {
maxX = index;
}
if (quad[maxY].fY < quad[index].fY) {
maxY = index;
}
}
for (index = 0; index < 3; ++index) {
if (AlmostEqualUlps(quad[index].fX, quad[minX].fX)) {
minXSet |= 1 << index;
}
if (AlmostEqualUlps(quad[index].fY, quad[minY].fY)) {
minYSet |= 1 << index;
}
}
if (minXSet == 0x7) { // test for vertical line
if (minYSet == 0x7) { // return 1 if all four are coincident
return coincident_line(quad, fQuad);
}
return vertical_line(quad, fQuad);
}
if (minYSet == 0xF) { // test for horizontal line
return horizontal_line(quad, fQuad);
}
int result = check_linear(quad, minX, maxX, minY, maxY, fQuad);
if (result) {
return result;
}
fQuad = quad;
return 3;
}
////////////////////////////////////////////////////////////////////////////////////
static int coincident_line(const SkDCubic& cubic, SkDCubic& reduction) {
reduction[0] = reduction[1] = cubic[0];
return 1;
}
static int reductionLineCount(const SkDCubic& reduction) {
return 1 + !reduction[0].approximatelyEqual(reduction[1]);
}
static int vertical_line(const SkDCubic& cubic, SkDCubic& reduction) {
reduction[0] = cubic[0];
reduction[1] = cubic[3];
return reductionLineCount(reduction);
}
static int horizontal_line(const SkDCubic& cubic, SkDCubic& reduction) {
reduction[0] = cubic[0];
reduction[1] = cubic[3];
return reductionLineCount(reduction);
}
// check to see if it is a quadratic or a line
static int check_quadratic(const SkDCubic& cubic, SkDCubic& reduction) {
double dx10 = cubic[1].fX - cubic[0].fX;
double dx23 = cubic[2].fX - cubic[3].fX;
double midX = cubic[0].fX + dx10 * 3 / 2;
double sideAx = midX - cubic[3].fX;
double sideBx = dx23 * 3 / 2;
if (approximately_zero(sideAx) ? !approximately_equal(sideAx, sideBx)
: !AlmostEqualUlps(sideAx, sideBx)) {
return 0;
}
double dy10 = cubic[1].fY - cubic[0].fY;
double dy23 = cubic[2].fY - cubic[3].fY;
double midY = cubic[0].fY + dy10 * 3 / 2;
double sideAy = midY - cubic[3].fY;
double sideBy = dy23 * 3 / 2;
if (approximately_zero(sideAy) ? !approximately_equal(sideAy, sideBy)
: !AlmostEqualUlps(sideAy, sideBy)) {
return 0;
}
reduction[0] = cubic[0];
reduction[1].fX = midX;
reduction[1].fY = midY;
reduction[2] = cubic[3];
return 3;
}
static int check_linear(const SkDCubic& cubic,
int minX, int maxX, int minY, int maxY, SkDCubic& reduction) {
int startIndex = 0;
int endIndex = 3;
while (cubic[startIndex].approximatelyEqual(cubic[endIndex])) {
--endIndex;
if (endIndex == 0) {
endIndex = 3;
break;
}
}
if (!cubic.isLinear(startIndex, endIndex)) {
return 0;
}
// four are colinear: return line formed by outside
reduction[0] = cubic[0];
reduction[1] = cubic[3];
return reductionLineCount(reduction);
}
/* food for thought:
http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piecewise-degree-reduction-algos-2-a.html
Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the
corresponding quadratic Bezier are (given in convex combinations of
points):
q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4
q2 = -c1 + (3/2)c2 + (3/2)c3 - c4
q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4
Of course, this curve does not interpolate the end-points, but it would
be interesting to see the behaviour of such a curve in an applet.
--
Kalle Rutanen
http://kaba.hilvi.org
*/
// reduce to a quadratic or smaller
// look for identical points
// look for all four points in a line
// note that three points in a line doesn't simplify a cubic
// look for approximation with single quadratic
// save approximation with multiple quadratics for later
int SkReduceOrder::reduce(const SkDCubic& cubic, Quadratics allowQuadratics) {
int index, minX, maxX, minY, maxY;
int minXSet, minYSet;
minX = maxX = minY = maxY = 0;
minXSet = minYSet = 0;
for (index = 1; index < 4; ++index) {
if (cubic[minX].fX > cubic[index].fX) {
minX = index;
}
if (cubic[minY].fY > cubic[index].fY) {
minY = index;
}
if (cubic[maxX].fX < cubic[index].fX) {
maxX = index;
}
if (cubic[maxY].fY < cubic[index].fY) {
maxY = index;
}
}
for (index = 0; index < 4; ++index) {
double cx = cubic[index].fX;
double cy = cubic[index].fY;
double denom = SkTMax(fabs(cx), SkTMax(fabs(cy),
SkTMax(fabs(cubic[minX].fX), fabs(cubic[minY].fY))));
if (denom == 0) {
minXSet |= 1 << index;
minYSet |= 1 << index;
continue;
}
double inv = 1 / denom;
if (approximately_equal_half(cx * inv, cubic[minX].fX * inv)) {
minXSet |= 1 << index;
}
if (approximately_equal_half(cy * inv, cubic[minY].fY * inv)) {
minYSet |= 1 << index;
}
}
if (minXSet == 0xF) { // test for vertical line
if (minYSet == 0xF) { // return 1 if all four are coincident
return coincident_line(cubic, fCubic);
}
return vertical_line(cubic, fCubic);
}
if (minYSet == 0xF) { // test for horizontal line
return horizontal_line(cubic, fCubic);
}
int result = check_linear(cubic, minX, maxX, minY, maxY, fCubic);
if (result) {
return result;
}
if (allowQuadratics == SkReduceOrder::kAllow_Quadratics
&& (result = check_quadratic(cubic, fCubic))) {
return result;
}
fCubic = cubic;
return 4;
}
SkPath::Verb SkReduceOrder::Quad(const SkPoint a[3], SkPoint* reducePts) {
SkDQuad quad;
quad.set(a);
SkReduceOrder reducer;
int order = reducer.reduce(quad);
if (order == 2) { // quad became line
for (int index = 0; index < order; ++index) {
*reducePts++ = reducer.fLine[index].asSkPoint();
}
}
return SkPathOpsPointsToVerb(order - 1);
}
SkPath::Verb SkReduceOrder::Cubic(const SkPoint a[4], SkPoint* reducePts) {
SkDCubic cubic;
cubic.set(a);
SkReduceOrder reducer;
int order = reducer.reduce(cubic, kAllow_Quadratics);
if (order == 2 || order == 3) { // cubic became line or quad
for (int index = 0; index < order; ++index) {
*reducePts++ = reducer.fQuad[index].asSkPoint();
}
}
return SkPathOpsPointsToVerb(order - 1);
}
|