1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPathOpsTypes_DEFINED
#define SkPathOpsTypes_DEFINED
#include <float.h> // for FLT_EPSILON
#include "SkFloatingPoint.h"
#include "SkPath.h"
#include "SkPathOps.h"
#include "SkPathOpsDebug.h"
#include "SkSafe_math.h" // for fabs, sqrt
#include "SkScalar.h"
enum SkPathOpsMask {
kWinding_PathOpsMask = -1,
kNo_PathOpsMask = 0,
kEvenOdd_PathOpsMask = 1
};
class SkArenaAlloc;
class SkOpCoincidence;
class SkOpContour;
class SkOpContourHead;
class SkIntersections;
class SkIntersectionHelper;
enum class SkOpPhase : char {
kNoChange,
kIntersecting,
kWalking,
kFixWinding,
};
class SkOpGlobalState {
public:
SkOpGlobalState(SkOpContourHead* head,
SkArenaAlloc* allocator SkDEBUGPARAMS(bool debugSkipAssert)
SkDEBUGPARAMS(const char* testName));
enum {
kMaxWindingTries = 10
};
bool allocatedOpSpan() const {
return fAllocatedOpSpan;
}
SkArenaAlloc* allocator() {
return fAllocator;
}
void bumpNested() {
++fNested;
}
void clearNested() {
fNested = 0;
}
SkOpCoincidence* coincidence() {
return fCoincidence;
}
SkOpContourHead* contourHead() {
return fContourHead;
}
#ifdef SK_DEBUG
const class SkOpAngle* debugAngle(int id) const;
const SkOpCoincidence* debugCoincidence() const;
SkOpContour* debugContour(int id) const;
const class SkOpPtT* debugPtT(int id) const;
#endif
static bool DebugRunFail();
#ifdef SK_DEBUG
const class SkOpSegment* debugSegment(int id) const;
bool debugSkipAssert() const { return fDebugSkipAssert; }
const class SkOpSpanBase* debugSpan(int id) const;
const char* debugTestName() const { return fDebugTestName; }
#endif
#if DEBUG_T_SECT_LOOP_COUNT
void debugAddLoopCount(SkIntersections* , const SkIntersectionHelper& ,
const SkIntersectionHelper& );
void debugDoYourWorst(SkOpGlobalState* );
void debugLoopReport();
void debugResetLoopCounts();
#endif
#if DEBUG_COINCIDENCE
void debugSetCheckHealth(bool check) { fDebugCheckHealth = check; }
bool debugCheckHealth() const { return fDebugCheckHealth; }
#endif
#if DEBUG_VALIDATE || DEBUG_COIN
void debugSetPhase(const char* funcName DEBUG_COIN_DECLARE_PARAMS()) const;
#endif
#if DEBUG_COIN
void debugAddToCoinChangedDict();
void debugAddToGlobalCoinDicts();
SkPathOpsDebug::CoinDict* debugCoinChangedDict() { return &fCoinChangedDict; }
const SkPathOpsDebug::CoinDictEntry& debugCoinDictEntry() const { return fCoinDictEntry; }
static void DumpCoinDict();
#endif
int nested() const {
return fNested;
}
#ifdef SK_DEBUG
int nextAngleID() {
return ++fAngleID;
}
int nextCoinID() {
return ++fCoinID;
}
int nextContourID() {
return ++fContourID;
}
int nextPtTID() {
return ++fPtTID;
}
int nextSegmentID() {
return ++fSegmentID;
}
int nextSpanID() {
return ++fSpanID;
}
#endif
SkOpPhase phase() const {
return fPhase;
}
void resetAllocatedOpSpan() {
fAllocatedOpSpan = false;
}
void setAllocatedOpSpan() {
fAllocatedOpSpan = true;
}
void setCoincidence(SkOpCoincidence* coincidence) {
fCoincidence = coincidence;
}
void setContourHead(SkOpContourHead* contourHead) {
fContourHead = contourHead;
}
void setPhase(SkOpPhase phase) {
if (SkOpPhase::kNoChange == phase) {
return;
}
SkASSERT(fPhase != phase);
fPhase = phase;
}
// called in very rare cases where angles are sorted incorrectly -- signfies op will fail
void setWindingFailed() {
fWindingFailed = true;
}
bool windingFailed() const {
return fWindingFailed;
}
private:
SkArenaAlloc* fAllocator;
SkOpCoincidence* fCoincidence;
SkOpContourHead* fContourHead;
int fNested;
bool fAllocatedOpSpan;
bool fWindingFailed;
SkOpPhase fPhase;
#ifdef SK_DEBUG
const char* fDebugTestName;
void* fDebugReporter;
int fAngleID;
int fCoinID;
int fContourID;
int fPtTID;
int fSegmentID;
int fSpanID;
bool fDebugSkipAssert;
#endif
#if DEBUG_T_SECT_LOOP_COUNT
int fDebugLoopCount[3];
SkPath::Verb fDebugWorstVerb[6];
SkPoint fDebugWorstPts[24];
float fDebugWorstWeight[6];
#endif
#if DEBUG_COIN
SkPathOpsDebug::CoinDict fCoinChangedDict;
SkPathOpsDebug::CoinDict fCoinVisitedDict;
SkPathOpsDebug::CoinDictEntry fCoinDictEntry;
const char* fPreviousFuncName;
#endif
#if DEBUG_COINCIDENCE
bool fDebugCheckHealth;
#endif
};
#ifdef SK_DEBUG
#if DEBUG_COINCIDENCE
#define SkOPASSERT(cond) SkASSERT((this->globalState() && \
(this->globalState()->debugCheckHealth() || \
this->globalState()->debugSkipAssert())) || (cond))
#else
#define SkOPASSERT(cond) SkASSERT((this->globalState() && \
this->globalState()->debugSkipAssert()) || (cond))
#endif
#define SkOPOBJASSERT(obj, cond) SkASSERT((obj->globalState() && \
obj->globalState()->debugSkipAssert()) || (cond))
#else
#define SkOPASSERT(cond)
#define SkOPOBJASSERT(obj, cond)
#endif
// Use Almost Equal when comparing coordinates. Use epsilon to compare T values.
bool AlmostEqualUlps(float a, float b);
inline bool AlmostEqualUlps(double a, double b) {
return AlmostEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}
bool AlmostEqualUlpsNoNormalCheck(float a, float b);
inline bool AlmostEqualUlpsNoNormalCheck(double a, double b) {
return AlmostEqualUlpsNoNormalCheck(SkDoubleToScalar(a), SkDoubleToScalar(b));
}
bool AlmostEqualUlps_Pin(float a, float b);
inline bool AlmostEqualUlps_Pin(double a, double b) {
return AlmostEqualUlps_Pin(SkDoubleToScalar(a), SkDoubleToScalar(b));
}
// Use Almost Dequal when comparing should not special case denormalized values.
bool AlmostDequalUlps(float a, float b);
bool AlmostDequalUlps(double a, double b);
bool NotAlmostEqualUlps(float a, float b);
inline bool NotAlmostEqualUlps(double a, double b) {
return NotAlmostEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}
bool NotAlmostEqualUlps_Pin(float a, float b);
inline bool NotAlmostEqualUlps_Pin(double a, double b) {
return NotAlmostEqualUlps_Pin(SkDoubleToScalar(a), SkDoubleToScalar(b));
}
bool NotAlmostDequalUlps(float a, float b);
inline bool NotAlmostDequalUlps(double a, double b) {
return NotAlmostDequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}
// Use Almost Bequal when comparing coordinates in conjunction with between.
bool AlmostBequalUlps(float a, float b);
inline bool AlmostBequalUlps(double a, double b) {
return AlmostBequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}
bool AlmostPequalUlps(float a, float b);
inline bool AlmostPequalUlps(double a, double b) {
return AlmostPequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}
bool RoughlyEqualUlps(float a, float b);
inline bool RoughlyEqualUlps(double a, double b) {
return RoughlyEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}
bool AlmostLessUlps(float a, float b);
inline bool AlmostLessUlps(double a, double b) {
return AlmostLessUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}
bool AlmostLessOrEqualUlps(float a, float b);
inline bool AlmostLessOrEqualUlps(double a, double b) {
return AlmostLessOrEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}
bool AlmostBetweenUlps(float a, float b, float c);
inline bool AlmostBetweenUlps(double a, double b, double c) {
return AlmostBetweenUlps(SkDoubleToScalar(a), SkDoubleToScalar(b), SkDoubleToScalar(c));
}
int UlpsDistance(float a, float b);
inline int UlpsDistance(double a, double b) {
return UlpsDistance(SkDoubleToScalar(a), SkDoubleToScalar(b));
}
// FLT_EPSILON == 1.19209290E-07 == 1 / (2 ^ 23)
// DBL_EPSILON == 2.22045e-16
const double FLT_EPSILON_CUBED = FLT_EPSILON * FLT_EPSILON * FLT_EPSILON;
const double FLT_EPSILON_HALF = FLT_EPSILON / 2;
const double FLT_EPSILON_DOUBLE = FLT_EPSILON * 2;
const double FLT_EPSILON_ORDERABLE_ERR = FLT_EPSILON * 16;
const double FLT_EPSILON_SQUARED = FLT_EPSILON * FLT_EPSILON;
// Use a compile-time constant for FLT_EPSILON_SQRT to avoid initializers.
// A 17 digit constant guarantees exact results.
const double FLT_EPSILON_SQRT = 0.00034526697709225118; // sqrt(FLT_EPSILON);
const double FLT_EPSILON_INVERSE = 1 / FLT_EPSILON;
const double DBL_EPSILON_ERR = DBL_EPSILON * 4; // FIXME: tune -- allow a few bits of error
const double DBL_EPSILON_SUBDIVIDE_ERR = DBL_EPSILON * 16;
const double ROUGH_EPSILON = FLT_EPSILON * 64;
const double MORE_ROUGH_EPSILON = FLT_EPSILON * 256;
const double WAY_ROUGH_EPSILON = FLT_EPSILON * 2048;
const double BUMP_EPSILON = FLT_EPSILON * 4096;
const SkScalar INVERSE_NUMBER_RANGE = FLT_EPSILON_ORDERABLE_ERR;
inline bool zero_or_one(double x) {
return x == 0 || x == 1;
}
inline bool approximately_zero(double x) {
return fabs(x) < FLT_EPSILON;
}
inline bool precisely_zero(double x) {
return fabs(x) < DBL_EPSILON_ERR;
}
inline bool precisely_subdivide_zero(double x) {
return fabs(x) < DBL_EPSILON_SUBDIVIDE_ERR;
}
inline bool approximately_zero(float x) {
return fabs(x) < FLT_EPSILON;
}
inline bool approximately_zero_cubed(double x) {
return fabs(x) < FLT_EPSILON_CUBED;
}
inline bool approximately_zero_half(double x) {
return fabs(x) < FLT_EPSILON_HALF;
}
inline bool approximately_zero_double(double x) {
return fabs(x) < FLT_EPSILON_DOUBLE;
}
inline bool approximately_zero_orderable(double x) {
return fabs(x) < FLT_EPSILON_ORDERABLE_ERR;
}
inline bool approximately_zero_squared(double x) {
return fabs(x) < FLT_EPSILON_SQUARED;
}
inline bool approximately_zero_sqrt(double x) {
return fabs(x) < FLT_EPSILON_SQRT;
}
inline bool roughly_zero(double x) {
return fabs(x) < ROUGH_EPSILON;
}
inline bool approximately_zero_inverse(double x) {
return fabs(x) > FLT_EPSILON_INVERSE;
}
inline bool approximately_zero_when_compared_to(double x, double y) {
return x == 0 || fabs(x) < fabs(y * FLT_EPSILON);
}
inline bool precisely_zero_when_compared_to(double x, double y) {
return x == 0 || fabs(x) < fabs(y * DBL_EPSILON);
}
inline bool roughly_zero_when_compared_to(double x, double y) {
return x == 0 || fabs(x) < fabs(y * ROUGH_EPSILON);
}
// Use this for comparing Ts in the range of 0 to 1. For general numbers (larger and smaller) use
// AlmostEqualUlps instead.
inline bool approximately_equal(double x, double y) {
return approximately_zero(x - y);
}
inline bool precisely_equal(double x, double y) {
return precisely_zero(x - y);
}
inline bool precisely_subdivide_equal(double x, double y) {
return precisely_subdivide_zero(x - y);
}
inline bool approximately_equal_half(double x, double y) {
return approximately_zero_half(x - y);
}
inline bool approximately_equal_double(double x, double y) {
return approximately_zero_double(x - y);
}
inline bool approximately_equal_orderable(double x, double y) {
return approximately_zero_orderable(x - y);
}
inline bool approximately_equal_squared(double x, double y) {
return approximately_equal(x, y);
}
inline bool approximately_greater(double x, double y) {
return x - FLT_EPSILON >= y;
}
inline bool approximately_greater_double(double x, double y) {
return x - FLT_EPSILON_DOUBLE >= y;
}
inline bool approximately_greater_orderable(double x, double y) {
return x - FLT_EPSILON_ORDERABLE_ERR >= y;
}
inline bool approximately_greater_or_equal(double x, double y) {
return x + FLT_EPSILON > y;
}
inline bool approximately_greater_or_equal_double(double x, double y) {
return x + FLT_EPSILON_DOUBLE > y;
}
inline bool approximately_greater_or_equal_orderable(double x, double y) {
return x + FLT_EPSILON_ORDERABLE_ERR > y;
}
inline bool approximately_lesser(double x, double y) {
return x + FLT_EPSILON <= y;
}
inline bool approximately_lesser_double(double x, double y) {
return x + FLT_EPSILON_DOUBLE <= y;
}
inline bool approximately_lesser_orderable(double x, double y) {
return x + FLT_EPSILON_ORDERABLE_ERR <= y;
}
inline bool approximately_lesser_or_equal(double x, double y) {
return x - FLT_EPSILON < y;
}
inline bool approximately_lesser_or_equal_double(double x, double y) {
return x - FLT_EPSILON_DOUBLE < y;
}
inline bool approximately_lesser_or_equal_orderable(double x, double y) {
return x - FLT_EPSILON_ORDERABLE_ERR < y;
}
inline bool approximately_greater_than_one(double x) {
return x > 1 - FLT_EPSILON;
}
inline bool precisely_greater_than_one(double x) {
return x > 1 - DBL_EPSILON_ERR;
}
inline bool approximately_less_than_zero(double x) {
return x < FLT_EPSILON;
}
inline bool precisely_less_than_zero(double x) {
return x < DBL_EPSILON_ERR;
}
inline bool approximately_negative(double x) {
return x < FLT_EPSILON;
}
inline bool approximately_negative_orderable(double x) {
return x < FLT_EPSILON_ORDERABLE_ERR;
}
inline bool precisely_negative(double x) {
return x < DBL_EPSILON_ERR;
}
inline bool approximately_one_or_less(double x) {
return x < 1 + FLT_EPSILON;
}
inline bool approximately_one_or_less_double(double x) {
return x < 1 + FLT_EPSILON_DOUBLE;
}
inline bool approximately_positive(double x) {
return x > -FLT_EPSILON;
}
inline bool approximately_positive_squared(double x) {
return x > -(FLT_EPSILON_SQUARED);
}
inline bool approximately_zero_or_more(double x) {
return x > -FLT_EPSILON;
}
inline bool approximately_zero_or_more_double(double x) {
return x > -FLT_EPSILON_DOUBLE;
}
inline bool approximately_between_orderable(double a, double b, double c) {
return a <= c
? approximately_negative_orderable(a - b) && approximately_negative_orderable(b - c)
: approximately_negative_orderable(b - a) && approximately_negative_orderable(c - b);
}
inline bool approximately_between(double a, double b, double c) {
return a <= c ? approximately_negative(a - b) && approximately_negative(b - c)
: approximately_negative(b - a) && approximately_negative(c - b);
}
inline bool precisely_between(double a, double b, double c) {
return a <= c ? precisely_negative(a - b) && precisely_negative(b - c)
: precisely_negative(b - a) && precisely_negative(c - b);
}
// returns true if (a <= b <= c) || (a >= b >= c)
inline bool between(double a, double b, double c) {
SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0)
|| (precisely_zero(a) && precisely_zero(b) && precisely_zero(c)));
return (a - b) * (c - b) <= 0;
}
inline bool roughly_equal(double x, double y) {
return fabs(x - y) < ROUGH_EPSILON;
}
inline bool roughly_negative(double x) {
return x < ROUGH_EPSILON;
}
inline bool roughly_between(double a, double b, double c) {
return a <= c ? roughly_negative(a - b) && roughly_negative(b - c)
: roughly_negative(b - a) && roughly_negative(c - b);
}
inline bool more_roughly_equal(double x, double y) {
return fabs(x - y) < MORE_ROUGH_EPSILON;
}
struct SkDPoint;
struct SkDVector;
struct SkDLine;
struct SkDQuad;
struct SkDConic;
struct SkDCubic;
struct SkDRect;
inline SkPath::Verb SkPathOpsPointsToVerb(int points) {
int verb = (1 << points) >> 1;
#ifdef SK_DEBUG
switch (points) {
case 0: SkASSERT(SkPath::kMove_Verb == verb); break;
case 1: SkASSERT(SkPath::kLine_Verb == verb); break;
case 2: SkASSERT(SkPath::kQuad_Verb == verb); break;
case 3: SkASSERT(SkPath::kCubic_Verb == verb); break;
default: SkDEBUGFAIL("should not be here");
}
#endif
return (SkPath::Verb)verb;
}
inline int SkPathOpsVerbToPoints(SkPath::Verb verb) {
int points = (int) verb - (((int) verb + 1) >> 2);
#ifdef SK_DEBUG
switch (verb) {
case SkPath::kLine_Verb: SkASSERT(1 == points); break;
case SkPath::kQuad_Verb: SkASSERT(2 == points); break;
case SkPath::kConic_Verb: SkASSERT(2 == points); break;
case SkPath::kCubic_Verb: SkASSERT(3 == points); break;
default: SkDEBUGFAIL("should not get here");
}
#endif
return points;
}
inline double SkDInterp(double A, double B, double t) {
return A + (B - A) * t;
}
double SkDCubeRoot(double x);
/* Returns -1 if negative, 0 if zero, 1 if positive
*/
inline int SkDSign(double x) {
return (x > 0) - (x < 0);
}
/* Returns 0 if negative, 1 if zero, 2 if positive
*/
inline int SKDSide(double x) {
return (x > 0) + (x >= 0);
}
/* Returns 1 if negative, 2 if zero, 4 if positive
*/
inline int SkDSideBit(double x) {
return 1 << SKDSide(x);
}
inline double SkPinT(double t) {
return precisely_less_than_zero(t) ? 0 : precisely_greater_than_one(t) ? 1 : t;
}
#endif
|