aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/pathops/SkPathOpsTypes.h
blob: 96627842b3701a186792716bae400b6cfca0a639 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#ifndef SkPathOpsTypes_DEFINED
#define SkPathOpsTypes_DEFINED

#include <float.h>  // for FLT_EPSILON
#include <math.h>   // for fabs, sqrt

#include "SkFloatingPoint.h"
#include "SkPath.h"
#include "SkPathOps.h"
#include "SkPathOpsDebug.h"
#include "SkScalar.h"

enum SkPathOpsMask {
    kWinding_PathOpsMask = -1,
    kNo_PathOpsMask = 0,
    kEvenOdd_PathOpsMask = 1
};

// Use Almost Equal when comparing coordinates. Use epsilon to compare T values.
bool AlmostEqualUlps(float a, float b);
inline bool AlmostEqualUlps(double a, double b) {
    return AlmostEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}

// Use Almost Dequal when comparing should not special case denormalized values.
bool AlmostDequalUlps(float a, float b);
bool AlmostDequalUlps(double a, double b);

bool NotAlmostEqualUlps(float a, float b);
inline bool NotAlmostEqualUlps(double a, double b) {
    return NotAlmostEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}

bool NotAlmostDequalUlps(float a, float b);
inline bool NotAlmostDequalUlps(double a, double b) {
    return NotAlmostDequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}

// Use Almost Bequal when comparing coordinates in conjunction with between.
bool AlmostBequalUlps(float a, float b);
inline bool AlmostBequalUlps(double a, double b) {
    return AlmostBequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}

bool AlmostPequalUlps(float a, float b);
inline bool AlmostPequalUlps(double a, double b) {
    return AlmostPequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}

bool RoughlyEqualUlps(float a, float b);
inline bool RoughlyEqualUlps(double a, double b) {
    return RoughlyEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}

bool AlmostLessUlps(float a, float b);
inline bool AlmostLessUlps(double a, double b) {
    return AlmostLessUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}

bool AlmostLessOrEqualUlps(float a, float b);
inline bool AlmostLessOrEqualUlps(double a, double b) {
    return AlmostLessOrEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}

bool AlmostBetweenUlps(float a, float b, float c);
inline bool AlmostBetweenUlps(double a, double b, double c) {
    return AlmostBetweenUlps(SkDoubleToScalar(a), SkDoubleToScalar(b), SkDoubleToScalar(c));
}

int UlpsDistance(float a, float b);
inline int UlpsDistance(double a, double b) {
    return UlpsDistance(SkDoubleToScalar(a), SkDoubleToScalar(b));
}

// FLT_EPSILON == 1.19209290E-07 == 1 / (2 ^ 23)
// DBL_EPSILON == 2.22045e-16
const double FLT_EPSILON_CUBED = FLT_EPSILON * FLT_EPSILON * FLT_EPSILON;
const double FLT_EPSILON_HALF = FLT_EPSILON / 2;
const double FLT_EPSILON_DOUBLE = FLT_EPSILON * 2;
const double FLT_EPSILON_ORDERABLE_ERR = FLT_EPSILON * 16;
const double FLT_EPSILON_SQUARED = FLT_EPSILON * FLT_EPSILON;
const double FLT_EPSILON_SQRT = sqrt(FLT_EPSILON);
const double FLT_EPSILON_INVERSE = 1 / FLT_EPSILON;
const double DBL_EPSILON_ERR = DBL_EPSILON * 4;  // FIXME: tune -- allow a few bits of error
const double DBL_EPSILON_SUBDIVIDE_ERR = DBL_EPSILON * 16;
const double ROUGH_EPSILON = FLT_EPSILON * 64;
const double MORE_ROUGH_EPSILON = FLT_EPSILON * 256;
const double WAY_ROUGH_EPSILON = FLT_EPSILON * 2048;

inline bool zero_or_one(double x) {
    return x == 0 || x == 1;
}

inline bool approximately_zero(double x) {
    return fabs(x) < FLT_EPSILON;
}

inline bool precisely_zero(double x) {
    return fabs(x) < DBL_EPSILON_ERR;
}

inline bool precisely_subdivide_zero(double x) {
    return fabs(x) < DBL_EPSILON_SUBDIVIDE_ERR;
}

inline bool approximately_zero(float x) {
    return fabs(x) < FLT_EPSILON;
}

inline bool approximately_zero_cubed(double x) {
    return fabs(x) < FLT_EPSILON_CUBED;
}

inline bool approximately_zero_half(double x) {
    return fabs(x) < FLT_EPSILON_HALF;
}

inline bool approximately_zero_double(double x) {
    return fabs(x) < FLT_EPSILON_DOUBLE;
}

inline bool approximately_zero_orderable(double x) {
    return fabs(x) < FLT_EPSILON_ORDERABLE_ERR;
}

inline bool approximately_zero_squared(double x) {
    return fabs(x) < FLT_EPSILON_SQUARED;
}

inline bool approximately_zero_sqrt(double x) {
    return fabs(x) < FLT_EPSILON_SQRT;
}

inline bool roughly_zero(double x) {
    return fabs(x) < ROUGH_EPSILON;
}

inline bool approximately_zero_inverse(double x) {
    return fabs(x) > FLT_EPSILON_INVERSE;
}

// OPTIMIZATION: if called multiple times with the same denom, we want to pass 1/y instead
inline bool approximately_zero_when_compared_to(double x, double y) {
    return x == 0 || fabs(x) < fabs(y * FLT_EPSILON);
}

// Use this for comparing Ts in the range of 0 to 1. For general numbers (larger and smaller) use
// AlmostEqualUlps instead.
inline bool approximately_equal(double x, double y) {
    return approximately_zero(x - y);
}

inline bool precisely_equal(double x, double y) {
    return precisely_zero(x - y);
}

inline bool precisely_subdivide_equal(double x, double y) {
    return precisely_subdivide_zero(x - y);
}

inline bool approximately_equal_half(double x, double y) {
    return approximately_zero_half(x - y);
}

inline bool approximately_equal_double(double x, double y) {
    return approximately_zero_double(x - y);
}

inline bool approximately_equal_orderable(double x, double y) {
    return approximately_zero_orderable(x - y);
}

inline bool approximately_equal_squared(double x, double y) {
    return approximately_equal(x, y);
}

inline bool approximately_greater(double x, double y) {
    return x - FLT_EPSILON >= y;
}

inline bool approximately_greater_double(double x, double y) {
    return x - FLT_EPSILON_DOUBLE >= y;
}

inline bool approximately_greater_orderable(double x, double y) {
    return x - FLT_EPSILON_ORDERABLE_ERR >= y;
}

inline bool approximately_greater_or_equal(double x, double y) {
    return x + FLT_EPSILON > y;
}

inline bool approximately_greater_or_equal_double(double x, double y) {
    return x + FLT_EPSILON_DOUBLE > y;
}

inline bool approximately_greater_or_equal_orderable(double x, double y) {
    return x + FLT_EPSILON_ORDERABLE_ERR > y;
}

inline bool approximately_lesser(double x, double y) {
    return x + FLT_EPSILON <= y;
}

inline bool approximately_lesser_double(double x, double y) {
    return x + FLT_EPSILON_DOUBLE <= y;
}

inline bool approximately_lesser_orderable(double x, double y) {
    return x + FLT_EPSILON_ORDERABLE_ERR <= y;
}

inline bool approximately_lesser_or_equal(double x, double y) {
    return x - FLT_EPSILON < y;
}

inline bool approximately_lesser_or_equal_double(double x, double y) {
    return x - FLT_EPSILON_DOUBLE < y;
}

inline bool approximately_lesser_or_equal_orderable(double x, double y) {
    return x - FLT_EPSILON_ORDERABLE_ERR < y;
}

inline bool approximately_greater_than_one(double x) {
    return x > 1 - FLT_EPSILON;
}

inline bool precisely_greater_than_one(double x) {
    return x > 1 - DBL_EPSILON_ERR;
}

inline bool approximately_less_than_zero(double x) {
    return x < FLT_EPSILON;
}

inline bool precisely_less_than_zero(double x) {
    return x < DBL_EPSILON_ERR;
}

inline bool approximately_negative(double x) {
    return x < FLT_EPSILON;
}

inline bool approximately_negative_orderable(double x) {
    return x < FLT_EPSILON_ORDERABLE_ERR;
}

inline bool precisely_negative(double x) {
    return x < DBL_EPSILON_ERR;
}

inline bool approximately_one_or_less(double x) {
    return x < 1 + FLT_EPSILON;
}

inline bool approximately_one_or_less_double(double x) {
    return x < 1 + FLT_EPSILON_DOUBLE;
}

inline bool approximately_positive(double x) {
    return x > -FLT_EPSILON;
}

inline bool approximately_positive_squared(double x) {
    return x > -(FLT_EPSILON_SQUARED);
}

inline bool approximately_zero_or_more(double x) {
    return x > -FLT_EPSILON;
}

inline bool approximately_zero_or_more_double(double x) {
    return x > -FLT_EPSILON_DOUBLE;
}

inline bool approximately_between_orderable(double a, double b, double c) {
    return a <= c
            ? approximately_negative_orderable(a - b) && approximately_negative_orderable(b - c)
            : approximately_negative_orderable(b - a) && approximately_negative_orderable(c - b);
}

inline bool approximately_between(double a, double b, double c) {
    return a <= c ? approximately_negative(a - b) && approximately_negative(b - c)
            : approximately_negative(b - a) && approximately_negative(c - b);
}

inline bool precisely_between(double a, double b, double c) {
    return a <= c ? precisely_negative(a - b) && precisely_negative(b - c)
            : precisely_negative(b - a) && precisely_negative(c - b);
}

// returns true if (a <= b <= c) || (a >= b >= c)
inline bool between(double a, double b, double c) {
    SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0));
    return (a - b) * (c - b) <= 0;
}

inline bool roughly_equal(double x, double y) {
    return fabs(x - y) < ROUGH_EPSILON;
}

inline bool more_roughly_equal(double x, double y) {
    return fabs(x - y) < MORE_ROUGH_EPSILON;
}

inline bool way_roughly_equal(double x, double y) {
    return fabs(x - y) < WAY_ROUGH_EPSILON;
}

struct SkDPoint;
struct SkDVector;
struct SkDLine;
struct SkDQuad;
struct SkDTriangle;
struct SkDCubic;
struct SkDRect;

inline SkPath::Verb SkPathOpsPointsToVerb(int points) {
    int verb = (1 << points) >> 1;
#ifdef SK_DEBUG
    switch (points) {
        case 0: SkASSERT(SkPath::kMove_Verb == verb); break;
        case 1: SkASSERT(SkPath::kLine_Verb == verb); break;
        case 2: SkASSERT(SkPath::kQuad_Verb == verb); break;
        case 3: SkASSERT(SkPath::kCubic_Verb == verb); break;
        default: SkDEBUGFAIL("should not be here");
    }
#endif
    return (SkPath::Verb)verb;
}

inline int SkPathOpsVerbToPoints(SkPath::Verb verb) {
    int points = (int) verb - ((int) verb >> 2);
#ifdef SK_DEBUG
    switch (verb) {
        case SkPath::kLine_Verb: SkASSERT(1 == points); break;
        case SkPath::kQuad_Verb: SkASSERT(2 == points); break;
        case SkPath::kCubic_Verb: SkASSERT(3 == points); break;
        default: SkDEBUGFAIL("should not get here");
    }
#endif
    return points;
}

inline double SkDInterp(double A, double B, double t) {
    return A + (B - A) * t;
}

double SkDCubeRoot(double x);

/* Returns -1 if negative, 0 if zero, 1 if positive
*/
inline int SkDSign(double x) {
    return (x > 0) - (x < 0);
}

/* Returns 0 if negative, 1 if zero, 2 if positive
*/
inline int SKDSide(double x) {
    return (x > 0) + (x >= 0);
}

/* Returns 1 if negative, 2 if zero, 4 if positive
*/
inline int SkDSideBit(double x) {
    return 1 << SKDSide(x);
}

inline double SkPinT(double t) {
    return precisely_less_than_zero(t) ? 0 : precisely_greater_than_one(t) ? 1 : t;
}

#endif