1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPathOpsTypes_DEFINED
#define SkPathOpsTypes_DEFINED
#include <float.h> // for FLT_EPSILON
#include <math.h> // for fabs, sqrt
#include "SkFloatingPoint.h"
#include "SkPathOps.h"
#include "SkPathOpsDebug.h"
#include "SkScalar.h"
enum SkPathOpsMask {
kWinding_PathOpsMask = -1,
kNo_PathOpsMask = 0,
kEvenOdd_PathOpsMask = 1
};
// Use Almost Equal when comparing coordinates. Use epsilon to compare T values.
extern bool AlmostEqualUlps(float A, float B);
inline bool AlmostEqualUlps(double A, double B) {
return AlmostEqualUlps(SkDoubleToScalar(A), SkDoubleToScalar(B));
}
// FLT_EPSILON == 1.19209290E-07 == 1 / (2 ^ 23)
// DBL_EPSILON == 2.22045e-16
const double FLT_EPSILON_CUBED = FLT_EPSILON * FLT_EPSILON * FLT_EPSILON;
const double FLT_EPSILON_HALF = FLT_EPSILON / 2;
const double FLT_EPSILON_SQUARED = FLT_EPSILON * FLT_EPSILON;
const double FLT_EPSILON_SQRT = sqrt(FLT_EPSILON);
const double FLT_EPSILON_INVERSE = 1 / FLT_EPSILON;
const double DBL_EPSILON_ERR = DBL_EPSILON * 4; // FIXME: tune -- allow a few bits of error
const double ROUGH_EPSILON = FLT_EPSILON * 64;
const double MORE_ROUGH_EPSILON = FLT_EPSILON * 256;
inline bool approximately_zero(double x) {
return fabs(x) < FLT_EPSILON;
}
inline bool precisely_zero(double x) {
return fabs(x) < DBL_EPSILON_ERR;
}
inline bool approximately_zero(float x) {
return fabs(x) < FLT_EPSILON;
}
inline bool approximately_zero_cubed(double x) {
return fabs(x) < FLT_EPSILON_CUBED;
}
inline bool approximately_zero_half(double x) {
return fabs(x) < FLT_EPSILON_HALF;
}
inline bool approximately_zero_squared(double x) {
return fabs(x) < FLT_EPSILON_SQUARED;
}
inline bool approximately_zero_sqrt(double x) {
return fabs(x) < FLT_EPSILON_SQRT;
}
inline bool approximately_zero_inverse(double x) {
return fabs(x) > FLT_EPSILON_INVERSE;
}
// OPTIMIZATION: if called multiple times with the same denom, we want to pass 1/y instead
inline bool approximately_zero_when_compared_to(double x, double y) {
return x == 0 || fabs(x / y) < FLT_EPSILON;
}
// Use this for comparing Ts in the range of 0 to 1. For general numbers (larger and smaller) use
// AlmostEqualUlps instead.
inline bool approximately_equal(double x, double y) {
return approximately_zero(x - y);
}
inline bool precisely_equal(double x, double y) {
return precisely_zero(x - y);
}
inline bool approximately_equal_half(double x, double y) {
return approximately_zero_half(x - y);
}
inline bool approximately_equal_squared(double x, double y) {
return approximately_equal(x, y);
}
inline bool approximately_greater(double x, double y) {
return x - FLT_EPSILON >= y;
}
inline bool approximately_greater_or_equal(double x, double y) {
return x + FLT_EPSILON > y;
}
inline bool approximately_lesser(double x, double y) {
return x + FLT_EPSILON <= y;
}
inline bool approximately_lesser_or_equal(double x, double y) {
return x - FLT_EPSILON < y;
}
inline double approximately_pin(double x) {
return approximately_zero(x) ? 0 : x;
}
inline float approximately_pin(float x) {
return approximately_zero(x) ? 0 : x;
}
inline bool approximately_greater_than_one(double x) {
return x > 1 - FLT_EPSILON;
}
inline bool precisely_greater_than_one(double x) {
return x > 1 - DBL_EPSILON_ERR;
}
inline bool approximately_less_than_zero(double x) {
return x < FLT_EPSILON;
}
inline bool precisely_less_than_zero(double x) {
return x < DBL_EPSILON_ERR;
}
inline bool approximately_negative(double x) {
return x < FLT_EPSILON;
}
inline bool precisely_negative(double x) {
return x < DBL_EPSILON_ERR;
}
inline bool approximately_one_or_less(double x) {
return x < 1 + FLT_EPSILON;
}
inline bool approximately_positive(double x) {
return x > -FLT_EPSILON;
}
inline bool approximately_positive_squared(double x) {
return x > -(FLT_EPSILON_SQUARED);
}
inline bool approximately_zero_or_more(double x) {
return x > -FLT_EPSILON;
}
inline bool approximately_between(double a, double b, double c) {
return a <= c ? approximately_negative(a - b) && approximately_negative(b - c)
: approximately_negative(b - a) && approximately_negative(c - b);
}
inline bool precisely_between(double a, double b, double c) {
return a <= c ? precisely_negative(a - b) && precisely_negative(b - c)
: precisely_negative(b - a) && precisely_negative(c - b);
}
// returns true if (a <= b <= c) || (a >= b >= c)
inline bool between(double a, double b, double c) {
SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0));
return (a - b) * (c - b) <= 0;
}
inline bool more_roughly_equal(double x, double y) {
return fabs(x - y) < MORE_ROUGH_EPSILON;
}
inline bool roughly_equal(double x, double y) {
return fabs(x - y) < ROUGH_EPSILON;
}
struct SkDPoint;
struct SkDVector;
struct SkDLine;
struct SkDQuad;
struct SkDTriangle;
struct SkDCubic;
struct SkDRect;
inline double SkDInterp(double A, double B, double t) {
return A + (B - A) * t;
}
double SkDCubeRoot(double x);
/* Returns -1 if negative, 0 if zero, 1 if positive
*/
inline int SkDSign(double x) {
return (x > 0) - (x < 0);
}
/* Returns 0 if negative, 1 if zero, 2 if positive
*/
inline int SKDSide(double x) {
return (x > 0) + (x >= 0);
}
/* Returns 1 if negative, 2 if zero, 4 if positive
*/
inline int SkDSideBit(double x) {
return 1 << SKDSide(x);
}
#endif
|