blob: 199d7be14b3121a2af60d02c8bd7457427fe4c6f (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkPathOpsTypes.h"
const int UlpsEpsilon = 16;
// from http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
union SkPathOpsUlpsFloat {
int32_t fInt;
float fFloat;
SkPathOpsUlpsFloat(float num = 0.0f) : fFloat(num) {}
bool negative() const { return fInt < 0; }
};
bool AlmostEqualUlps(float A, float B) {
SkPathOpsUlpsFloat uA(A);
SkPathOpsUlpsFloat uB(B);
// Different signs means they do not match.
if (uA.negative() != uB.negative())
{
// Check for equality to make sure +0 == -0
return A == B;
}
// Find the difference in ULPs.
int ulpsDiff = abs(uA.fInt - uB.fInt);
return ulpsDiff <= UlpsEpsilon;
}
// cube root approximation using bit hack for 64-bit float
// adapted from Kahan's cbrt
static double cbrt_5d(double d) {
const unsigned int B1 = 715094163;
double t = 0.0;
unsigned int* pt = (unsigned int*) &t;
unsigned int* px = (unsigned int*) &d;
pt[1] = px[1] / 3 + B1;
return t;
}
// iterative cube root approximation using Halley's method (double)
static double cbrta_halleyd(const double a, const double R) {
const double a3 = a * a * a;
const double b = a * (a3 + R + R) / (a3 + a3 + R);
return b;
}
// cube root approximation using 3 iterations of Halley's method (double)
static double halley_cbrt3d(double d) {
double a = cbrt_5d(d);
a = cbrta_halleyd(a, d);
a = cbrta_halleyd(a, d);
return cbrta_halleyd(a, d);
}
double SkDCubeRoot(double x) {
if (approximately_zero_cubed(x)) {
return 0;
}
double result = halley_cbrt3d(fabs(x));
if (x < 0) {
result = -result;
}
return result;
}
|