aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/pathops/SkPathOpsTypes.cpp
blob: df73d11ce44e0122abf84f86318ef8011444f0b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkFloatBits.h"
#include "SkPathOpsTypes.h"

static bool arguments_denormalized(float a, float b, int epsilon) {
    float denomalizedCheck = FLT_EPSILON * epsilon / 2;
    return fabsf(a) <= denomalizedCheck && fabsf(b) <= denomalizedCheck;
}

// from http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
// FIXME: move to SkFloatBits.h
static bool equal_ulps(float a, float b, int epsilon) {
    if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
        return false;
    }
    if (arguments_denormalized(a, b, epsilon)) {
        return true;
    }
    int aBits = SkFloatAs2sCompliment(a);
    int bBits = SkFloatAs2sCompliment(b);
    // Find the difference in ULPs.
    return aBits < bBits + epsilon && bBits < aBits + epsilon;
}

static bool d_equal_ulps(float a, float b, int epsilon) {
    if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
        return false;
    }
    int aBits = SkFloatAs2sCompliment(a);
    int bBits = SkFloatAs2sCompliment(b);
    // Find the difference in ULPs.
    return aBits < bBits + epsilon && bBits < aBits + epsilon;
}

static bool not_equal_ulps(float a, float b, int epsilon) {
    if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
        return false;
    }
    if (arguments_denormalized(a, b, epsilon)) {
        return false;
    }
    int aBits = SkFloatAs2sCompliment(a);
    int bBits = SkFloatAs2sCompliment(b);
    // Find the difference in ULPs.
    return aBits >= bBits + epsilon || bBits >= aBits + epsilon;
}

static bool d_not_equal_ulps(float a, float b, int epsilon) {
    if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
        return false;
    }
    int aBits = SkFloatAs2sCompliment(a);
    int bBits = SkFloatAs2sCompliment(b);
    // Find the difference in ULPs.
    return aBits >= bBits + epsilon || bBits >= aBits + epsilon;
}

static bool less_ulps(float a, float b, int epsilon) {
    if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
        return false;
    }
    if (arguments_denormalized(a, b, epsilon)) {
        return a <= b - FLT_EPSILON * epsilon;
    }
    int aBits = SkFloatAs2sCompliment(a);
    int bBits = SkFloatAs2sCompliment(b);
    // Find the difference in ULPs.
    return aBits <= bBits - epsilon;
}

static bool less_or_equal_ulps(float a, float b, int epsilon) {
    if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
        return false;
    }
    if (arguments_denormalized(a, b, epsilon)) {
        return a < b + FLT_EPSILON * epsilon;
    }
    int aBits = SkFloatAs2sCompliment(a);
    int bBits = SkFloatAs2sCompliment(b);
    // Find the difference in ULPs.
    return aBits < bBits + epsilon;
}

// equality using the same error term as between
bool AlmostBequalUlps(float a, float b) {
    const int UlpsEpsilon = 2;
    return equal_ulps(a, b, UlpsEpsilon);
}

bool AlmostDequalUlps(float a, float b) {
    const int UlpsEpsilon = 16;
    return d_equal_ulps(a, b, UlpsEpsilon);
}

bool AlmostEqualUlps(float a, float b) {
    const int UlpsEpsilon = 16;
    return equal_ulps(a, b, UlpsEpsilon);
}

bool NotAlmostEqualUlps(float a, float b) {
    const int UlpsEpsilon = 16;
    return not_equal_ulps(a, b, UlpsEpsilon);
}

bool NotAlmostDequalUlps(float a, float b) {
    const int UlpsEpsilon = 16;
    return d_not_equal_ulps(a, b, UlpsEpsilon);
}

bool RoughlyEqualUlps(float a, float b) {
    const int UlpsEpsilon = 256;
    return equal_ulps(a, b, UlpsEpsilon);
}

bool AlmostBetweenUlps(float a, float b, float c) {
    const int UlpsEpsilon = 2;
    return a <= c ? less_or_equal_ulps(a, b, UlpsEpsilon) && less_or_equal_ulps(b, c, UlpsEpsilon)
        : less_or_equal_ulps(b, a, UlpsEpsilon) && less_or_equal_ulps(c, b, UlpsEpsilon);
}

bool AlmostLessUlps(float a, float b) {
    const int UlpsEpsilon = 16;
    return less_ulps(a, b, UlpsEpsilon);
}

bool AlmostLessOrEqualUlps(float a, float b) {
    const int UlpsEpsilon = 16;
    return less_or_equal_ulps(a, b, UlpsEpsilon);
}

int UlpsDistance(float a, float b) {
    if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
        return SK_MaxS32;
    }
    SkFloatIntUnion floatIntA, floatIntB;
    floatIntA.fFloat = a;
    floatIntB.fFloat = b;
    // Different signs means they do not match.
    if ((floatIntA.fSignBitInt < 0) != (floatIntB.fSignBitInt < 0)) {
        // Check for equality to make sure +0 == -0
        return a == b ? 0 : SK_MaxS32;
    }
    // Find the difference in ULPs.
    return abs(floatIntA.fSignBitInt - floatIntB.fSignBitInt);
}

// cube root approximation using bit hack for 64-bit float
// adapted from Kahan's cbrt
static double cbrt_5d(double d) {
    const unsigned int B1 = 715094163;
    double t = 0.0;
    unsigned int* pt = (unsigned int*) &t;
    unsigned int* px = (unsigned int*) &d;
    pt[1] = px[1] / 3 + B1;
    return t;
}

// iterative cube root approximation using Halley's method (double)
static double cbrta_halleyd(const double a, const double R) {
    const double a3 = a * a * a;
    const double b = a * (a3 + R + R) / (a3 + a3 + R);
    return b;
}

// cube root approximation using 3 iterations of Halley's method (double)
static double halley_cbrt3d(double d) {
    double a = cbrt_5d(d);
    a = cbrta_halleyd(a, d);
    a = cbrta_halleyd(a, d);
    return cbrta_halleyd(a, d);
}

double SkDCubeRoot(double x) {
    if (approximately_zero_cubed(x)) {
        return 0;
    }
    double result = halley_cbrt3d(fabs(x));
    if (x < 0) {
        result = -result;
    }
    return result;
}