1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPathOpsQuad_DEFINED
#define SkPathOpsQuad_DEFINED
#include "SkPathOpsPoint.h"
struct SkOpCurve;
struct SkDQuadPair {
const SkDQuad& first() const { return (const SkDQuad&) pts[0]; }
const SkDQuad& second() const { return (const SkDQuad&) pts[2]; }
SkDPoint pts[5];
};
struct SkDQuad {
static const int kPointCount = 3;
static const int kPointLast = kPointCount - 1;
static const int kMaxIntersections = 4;
SkDPoint fPts[kPointCount];
bool collapsed() const {
return fPts[0].approximatelyEqual(fPts[1]) && fPts[0].approximatelyEqual(fPts[2]);
}
bool controlsInside() const {
SkDVector v01 = fPts[0] - fPts[1];
SkDVector v02 = fPts[0] - fPts[2];
SkDVector v12 = fPts[1] - fPts[2];
return v02.dot(v01) > 0 && v02.dot(v12) > 0;
}
void debugInit() {
sk_bzero(fPts, sizeof(fPts));
}
SkDQuad flip() const {
SkDQuad result = {{fPts[2], fPts[1], fPts[0]}};
return result;
}
static bool IsConic() { return false; }
const SkDQuad& set(const SkPoint pts[kPointCount]) {
fPts[0] = pts[0];
fPts[1] = pts[1];
fPts[2] = pts[2];
return *this;
}
const SkDPoint& operator[](int n) const { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; }
SkDPoint& operator[](int n) { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; }
static int AddValidTs(double s[], int realRoots, double* t);
void align(int endIndex, SkDPoint* dstPt) const;
SkDQuadPair chopAt(double t) const;
SkDVector dxdyAtT(double t) const;
static int FindExtrema(const double src[], double tValue[1]);
/**
* Return the number of valid roots (0 < root < 1) for this cubic intersecting the
* specified horizontal line.
*/
int horizontalIntersect(double yIntercept, double roots[2]) const;
bool hullIntersects(const SkDQuad& , bool* isLinear) const;
bool hullIntersects(const SkDConic& , bool* isLinear) const;
bool hullIntersects(const SkDCubic& , bool* isLinear) const;
bool isLinear(int startIndex, int endIndex) const;
bool monotonicInX() const;
bool monotonicInY() const;
void otherPts(int oddMan, const SkDPoint* endPt[2]) const;
SkDPoint ptAtT(double t) const;
static int RootsReal(double A, double B, double C, double t[2]);
static int RootsValidT(const double A, const double B, const double C, double s[2]);
static void SetABC(const double* quad, double* a, double* b, double* c);
SkDQuad subDivide(double t1, double t2) const;
static SkDQuad SubDivide(const SkPoint a[kPointCount], double t1, double t2) {
SkDQuad quad;
quad.set(a);
return quad.subDivide(t1, t2);
}
SkDPoint subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const;
static SkDPoint SubDivide(const SkPoint pts[kPointCount], const SkDPoint& a, const SkDPoint& c,
double t1, double t2) {
SkDQuad quad;
quad.set(pts);
return quad.subDivide(a, c, t1, t2);
}
/**
* Return the number of valid roots (0 < root < 1) for this cubic intersecting the
* specified vertical line.
*/
int verticalIntersect(double xIntercept, double roots[2]) const;
SkDCubic debugToCubic() const;
// utilities callable by the user from the debugger when the implementation code is linked in
void dump() const;
void dumpID(int id) const;
void dumpInner() const;
private:
// static double Tangent(const double* quadratic, double t); // uncalled
};
#endif
|