1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPathOpsPoint_DEFINED
#define SkPathOpsPoint_DEFINED
#include "SkPathOpsTypes.h"
#include "SkPoint.h"
inline bool AlmostEqualUlps(const SkPoint& pt1, const SkPoint& pt2) {
return AlmostEqualUlps(pt1.fX, pt2.fX) && AlmostEqualUlps(pt1.fY, pt2.fY);
}
struct SkDVector {
double fX;
double fY;
void set(const SkVector& pt) {
fX = pt.fX;
fY = pt.fY;
}
// only used by testing
void operator+=(const SkDVector& v) {
fX += v.fX;
fY += v.fY;
}
// only called by nearestT, which is currently only used by testing
void operator-=(const SkDVector& v) {
fX -= v.fX;
fY -= v.fY;
}
// only used by testing
void operator/=(const double s) {
fX /= s;
fY /= s;
}
// only used by testing
void operator*=(const double s) {
fX *= s;
fY *= s;
}
SkVector asSkVector() const {
SkVector v = {SkDoubleToScalar(fX), SkDoubleToScalar(fY)};
return v;
}
// only used by testing
double cross(const SkDVector& a) const {
return fX * a.fY - fY * a.fX;
}
// similar to cross, this bastardization considers nearly coincident to be zero
// uses ulps epsilon == 16
double crossCheck(const SkDVector& a) const {
double xy = fX * a.fY;
double yx = fY * a.fX;
return AlmostEqualUlps(xy, yx) ? 0 : xy - yx;
}
// allow tinier numbers
double crossNoNormalCheck(const SkDVector& a) const {
double xy = fX * a.fY;
double yx = fY * a.fX;
return AlmostEqualUlpsNoNormalCheck(xy, yx) ? 0 : xy - yx;
}
double dot(const SkDVector& a) const {
return fX * a.fX + fY * a.fY;
}
double length() const {
return sqrt(lengthSquared());
}
double lengthSquared() const {
return fX * fX + fY * fY;
}
void normalize() {
double inverseLength = 1 / this->length();
fX *= inverseLength;
fY *= inverseLength;
}
};
struct SkDPoint {
double fX;
double fY;
void set(const SkPoint& pt) {
fX = pt.fX;
fY = pt.fY;
}
friend SkDVector operator-(const SkDPoint& a, const SkDPoint& b);
friend bool operator==(const SkDPoint& a, const SkDPoint& b) {
return a.fX == b.fX && a.fY == b.fY;
}
friend bool operator!=(const SkDPoint& a, const SkDPoint& b) {
return a.fX != b.fX || a.fY != b.fY;
}
void operator=(const SkPoint& pt) {
fX = pt.fX;
fY = pt.fY;
}
// only used by testing
void operator+=(const SkDVector& v) {
fX += v.fX;
fY += v.fY;
}
// only used by testing
void operator-=(const SkDVector& v) {
fX -= v.fX;
fY -= v.fY;
}
// only used by testing
SkDPoint operator+(const SkDVector& v) {
SkDPoint result = *this;
result += v;
return result;
}
// only used by testing
SkDPoint operator-(const SkDVector& v) {
SkDPoint result = *this;
result -= v;
return result;
}
// note: this can not be implemented with
// return approximately_equal(a.fY, fY) && approximately_equal(a.fX, fX);
// because that will not take the magnitude of the values into account
bool approximatelyDEqual(const SkDPoint& a) const {
if (approximately_equal(fX, a.fX) && approximately_equal(fY, a.fY)) {
return true;
}
if (!RoughlyEqualUlps(fX, a.fX) || !RoughlyEqualUlps(fY, a.fY)) {
return false;
}
double dist = distance(a); // OPTIMIZATION: can we compare against distSq instead ?
double tiniest = SkTMin(SkTMin(SkTMin(fX, a.fX), fY), a.fY);
double largest = SkTMax(SkTMax(SkTMax(fX, a.fX), fY), a.fY);
largest = SkTMax(largest, -tiniest);
return AlmostDequalUlps(largest, largest + dist); // is the dist within ULPS tolerance?
}
bool approximatelyDEqual(const SkPoint& a) const {
SkDPoint dA;
dA.set(a);
return approximatelyDEqual(dA);
}
bool approximatelyEqual(const SkDPoint& a) const {
if (approximately_equal(fX, a.fX) && approximately_equal(fY, a.fY)) {
return true;
}
if (!RoughlyEqualUlps(fX, a.fX) || !RoughlyEqualUlps(fY, a.fY)) {
return false;
}
double dist = distance(a); // OPTIMIZATION: can we compare against distSq instead ?
double tiniest = SkTMin(SkTMin(SkTMin(fX, a.fX), fY), a.fY);
double largest = SkTMax(SkTMax(SkTMax(fX, a.fX), fY), a.fY);
largest = SkTMax(largest, -tiniest);
return AlmostPequalUlps(largest, largest + dist); // is the dist within ULPS tolerance?
}
bool approximatelyEqual(const SkPoint& a) const {
SkDPoint dA;
dA.set(a);
return approximatelyEqual(dA);
}
static bool ApproximatelyEqual(const SkPoint& a, const SkPoint& b) {
if (approximately_equal(a.fX, b.fX) && approximately_equal(a.fY, b.fY)) {
return true;
}
if (!RoughlyEqualUlps(a.fX, b.fX) || !RoughlyEqualUlps(a.fY, b.fY)) {
return false;
}
SkDPoint dA, dB;
dA.set(a);
dB.set(b);
double dist = dA.distance(dB); // OPTIMIZATION: can we compare against distSq instead ?
float tiniest = SkTMin(SkTMin(SkTMin(a.fX, b.fX), a.fY), b.fY);
float largest = SkTMax(SkTMax(SkTMax(a.fX, b.fX), a.fY), b.fY);
largest = SkTMax(largest, -tiniest);
return AlmostDequalUlps((double) largest, largest + dist); // is dist within ULPS tolerance?
}
// only used by testing
bool approximatelyZero() const {
return approximately_zero(fX) && approximately_zero(fY);
}
SkPoint asSkPoint() const {
SkPoint pt = {SkDoubleToScalar(fX), SkDoubleToScalar(fY)};
return pt;
}
double distance(const SkDPoint& a) const {
SkDVector temp = *this - a;
return temp.length();
}
double distanceSquared(const SkDPoint& a) const {
SkDVector temp = *this - a;
return temp.lengthSquared();
}
static SkDPoint Mid(const SkDPoint& a, const SkDPoint& b) {
SkDPoint result;
result.fX = (a.fX + b.fX) / 2;
result.fY = (a.fY + b.fY) / 2;
return result;
}
bool roughlyEqual(const SkDPoint& a) const {
if (roughly_equal(fX, a.fX) && roughly_equal(fY, a.fY)) {
return true;
}
double dist = distance(a); // OPTIMIZATION: can we compare against distSq instead ?
double tiniest = SkTMin(SkTMin(SkTMin(fX, a.fX), fY), a.fY);
double largest = SkTMax(SkTMax(SkTMax(fX, a.fX), fY), a.fY);
largest = SkTMax(largest, -tiniest);
return RoughlyEqualUlps(largest, largest + dist); // is the dist within ULPS tolerance?
}
static bool RoughlyEqual(const SkPoint& a, const SkPoint& b) {
if (!RoughlyEqualUlps(a.fX, b.fX) && !RoughlyEqualUlps(a.fY, b.fY)) {
return false;
}
SkDPoint dA, dB;
dA.set(a);
dB.set(b);
double dist = dA.distance(dB); // OPTIMIZATION: can we compare against distSq instead ?
float tiniest = SkTMin(SkTMin(SkTMin(a.fX, b.fX), a.fY), b.fY);
float largest = SkTMax(SkTMax(SkTMax(a.fX, b.fX), a.fY), b.fY);
largest = SkTMax(largest, -tiniest);
return RoughlyEqualUlps((double) largest, largest + dist); // is dist within ULPS tolerance?
}
// very light weight check, should only be used for inequality check
static bool WayRoughlyEqual(const SkPoint& a, const SkPoint& b) {
float largestNumber = SkTMax(SkTAbs(a.fX), SkTMax(SkTAbs(a.fY),
SkTMax(SkTAbs(b.fX), SkTAbs(b.fY))));
SkVector diffs = a - b;
float largestDiff = SkTMax(diffs.fX, diffs.fY);
return roughly_zero_when_compared_to(largestDiff, largestNumber);
}
// utilities callable by the user from the debugger when the implementation code is linked in
void dump() const;
static void Dump(const SkPoint& pt);
static void DumpHex(const SkPoint& pt);
};
#endif
|