1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkAddIntersections.h"
#include "SkOpCoincidence.h"
#include "SkOpEdgeBuilder.h"
#include "SkPathOpsCommon.h"
#include "SkPathWriter.h"
#include <utility>
static SkOpSegment* findChaseOp(SkTDArray<SkOpSpanBase*>& chase, SkOpSpanBase** startPtr,
SkOpSpanBase** endPtr) {
while (chase.count()) {
SkOpSpanBase* span;
chase.pop(&span);
// OPTIMIZE: prev makes this compatible with old code -- but is it necessary?
*startPtr = span->ptT()->prev()->span();
SkOpSegment* segment = (*startPtr)->segment();
bool done = true;
*endPtr = nullptr;
if (SkOpAngle* last = segment->activeAngle(*startPtr, startPtr, endPtr, &done)) {
*startPtr = last->start();
*endPtr = last->end();
#if TRY_ROTATE
*chase.insert(0) = span;
#else
*chase.append() = span;
#endif
return last->segment();
}
if (done) {
continue;
}
int winding;
bool sortable;
const SkOpAngle* angle = AngleWinding(*startPtr, *endPtr, &winding, &sortable);
if (!angle) {
return nullptr;
}
if (winding == SK_MinS32) {
continue;
}
int sumMiWinding, sumSuWinding;
if (sortable) {
segment = angle->segment();
sumMiWinding = segment->updateWindingReverse(angle);
if (sumMiWinding == SK_MinS32) {
SkASSERT(segment->globalState()->debugSkipAssert());
return nullptr;
}
sumSuWinding = segment->updateOppWindingReverse(angle);
if (sumSuWinding == SK_MinS32) {
SkASSERT(segment->globalState()->debugSkipAssert());
return nullptr;
}
if (segment->operand()) {
using std::swap;
swap(sumMiWinding, sumSuWinding);
}
}
SkOpSegment* first = nullptr;
const SkOpAngle* firstAngle = angle;
while ((angle = angle->next()) != firstAngle) {
segment = angle->segment();
SkOpSpanBase* start = angle->start();
SkOpSpanBase* end = angle->end();
int maxWinding = 0, sumWinding = 0, oppMaxWinding = 0, oppSumWinding = 0;
if (sortable) {
segment->setUpWindings(start, end, &sumMiWinding, &sumSuWinding,
&maxWinding, &sumWinding, &oppMaxWinding, &oppSumWinding);
}
if (!segment->done(angle)) {
if (!first && (sortable || start->starter(end)->windSum() != SK_MinS32)) {
first = segment;
*startPtr = start;
*endPtr = end;
}
// OPTIMIZATION: should this also add to the chase?
if (sortable) {
(void) segment->markAngle(maxWinding, sumWinding, oppMaxWinding,
oppSumWinding, angle);
}
}
}
if (first) {
#if TRY_ROTATE
*chase.insert(0) = span;
#else
*chase.append() = span;
#endif
return first;
}
}
return nullptr;
}
static bool bridgeOp(SkOpContourHead* contourList, const SkPathOp op,
const int xorMask, const int xorOpMask, SkPathWriter* writer) {
bool unsortable = false;
bool lastSimple = false;
bool simple = false;
do {
SkOpSpan* span = FindSortableTop(contourList);
if (!span) {
break;
}
SkOpSegment* current = span->segment();
SkOpSpanBase* start = span->next();
SkOpSpanBase* end = span;
SkTDArray<SkOpSpanBase*> chase;
do {
if (current->activeOp(start, end, xorMask, xorOpMask, op)) {
do {
if (!unsortable && current->done()) {
break;
}
SkASSERT(unsortable || !current->done());
SkOpSpanBase* nextStart = start;
SkOpSpanBase* nextEnd = end;
lastSimple = simple;
SkOpSegment* next = current->findNextOp(&chase, &nextStart, &nextEnd,
&unsortable, &simple, op, xorMask, xorOpMask);
if (!next) {
if (!unsortable && writer->hasMove()
&& current->verb() != SkPath::kLine_Verb
&& !writer->isClosed()) {
if (!current->addCurveTo(start, end, writer)) {
return false;
}
if (!writer->isClosed()) {
SkPathOpsDebug::ShowActiveSpans(contourList);
}
} else if (lastSimple) {
if (!current->addCurveTo(start, end, writer)) {
return false;
}
}
break;
}
#if DEBUG_FLOW
SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__,
current->debugID(), start->pt().fX, start->pt().fY,
end->pt().fX, end->pt().fY);
#endif
if (!current->addCurveTo(start, end, writer)) {
return false;
}
current = next;
start = nextStart;
end = nextEnd;
} while (!writer->isClosed() && (!unsortable || !start->starter(end)->done()));
if (current->activeWinding(start, end) && !writer->isClosed()) {
SkOpSpan* spanStart = start->starter(end);
if (!spanStart->done()) {
if (!current->addCurveTo(start, end, writer)) {
return false;
}
current->markDone(spanStart);
}
}
writer->finishContour();
} else {
SkOpSpanBase* last;
if (!current->markAndChaseDone(start, end, &last)) {
return false;
}
if (last && !last->chased()) {
last->setChased(true);
SkASSERT(!SkPathOpsDebug::ChaseContains(chase, last));
*chase.append() = last;
#if DEBUG_WINDING
SkDebugf("%s chase.append id=%d", __FUNCTION__, last->segment()->debugID());
if (!last->final()) {
SkDebugf(" windSum=%d", last->upCast()->windSum());
}
SkDebugf("\n");
#endif
}
}
current = findChaseOp(chase, &start, &end);
SkPathOpsDebug::ShowActiveSpans(contourList);
if (!current) {
break;
}
} while (true);
} while (true);
return true;
}
// diagram of why this simplifcation is possible is here:
// https://skia.org/dev/present/pathops link at bottom of the page
// https://drive.google.com/file/d/0BwoLUwz9PYkHLWpsaXd0UDdaN00/view?usp=sharing
static const SkPathOp gOpInverse[kReverseDifference_SkPathOp + 1][2][2] = {
// inside minuend outside minuend
// inside subtrahend outside subtrahend inside subtrahend outside subtrahend
{{ kDifference_SkPathOp, kIntersect_SkPathOp }, { kUnion_SkPathOp, kReverseDifference_SkPathOp }},
{{ kIntersect_SkPathOp, kDifference_SkPathOp }, { kReverseDifference_SkPathOp, kUnion_SkPathOp }},
{{ kUnion_SkPathOp, kReverseDifference_SkPathOp }, { kDifference_SkPathOp, kIntersect_SkPathOp }},
{{ kXOR_SkPathOp, kXOR_SkPathOp }, { kXOR_SkPathOp, kXOR_SkPathOp }},
{{ kReverseDifference_SkPathOp, kUnion_SkPathOp }, { kIntersect_SkPathOp, kDifference_SkPathOp }},
};
static const bool gOutInverse[kReverseDifference_SkPathOp + 1][2][2] = {
{{ false, false }, { true, false }}, // diff
{{ false, false }, { false, true }}, // sect
{{ false, true }, { true, true }}, // union
{{ false, true }, { true, false }}, // xor
{{ false, true }, { false, false }}, // rev diff
};
#if DEBUG_T_SECT_LOOP_COUNT
#include "SkMutex.h"
SK_DECLARE_STATIC_MUTEX(debugWorstLoop);
SkOpGlobalState debugWorstState(nullptr, nullptr SkDEBUGPARAMS(false) SkDEBUGPARAMS(nullptr));
void ReportPathOpsDebugging() {
debugWorstState.debugLoopReport();
}
extern void (*gVerboseFinalize)();
#endif
bool OpDebug(const SkPath& one, const SkPath& two, SkPathOp op, SkPath* result
SkDEBUGPARAMS(bool skipAssert) SkDEBUGPARAMS(const char* testName)) {
#if DEBUG_DUMP_VERIFY
#ifndef SK_DEBUG
const char* testName = "release";
#endif
if (SkPathOpsDebug::gDumpOp) {
SkPathOpsDebug::DumpOp(one, two, op, testName);
}
#endif
op = gOpInverse[op][one.isInverseFillType()][two.isInverseFillType()];
bool inverseFill = gOutInverse[op][one.isInverseFillType()][two.isInverseFillType()];
SkPath::FillType fillType = inverseFill ? SkPath::kInverseEvenOdd_FillType :
SkPath::kEvenOdd_FillType;
SkRect rect1, rect2;
if (kIntersect_SkPathOp == op && one.isRect(&rect1) && two.isRect(&rect2)) {
result->reset();
result->setFillType(fillType);
if (rect1.intersect(rect2)) {
result->addRect(rect1);
}
return true;
}
if (one.isEmpty() || two.isEmpty()) {
SkPath work;
switch (op) {
case kIntersect_SkPathOp:
break;
case kUnion_SkPathOp:
case kXOR_SkPathOp:
work = one.isEmpty() ? two : one;
break;
case kDifference_SkPathOp:
if (!one.isEmpty()) {
work = one;
}
break;
case kReverseDifference_SkPathOp:
if (!two.isEmpty()) {
work = two;
}
break;
default:
SkASSERT(0); // unhandled case
}
if (inverseFill != work.isInverseFillType()) {
work.toggleInverseFillType();
}
return Simplify(work, result);
}
SkSTArenaAlloc<4096> allocator; // FIXME: add a constant expression here, tune
SkOpContour contour;
SkOpContourHead* contourList = static_cast<SkOpContourHead*>(&contour);
SkOpGlobalState globalState(contourList, &allocator
SkDEBUGPARAMS(skipAssert) SkDEBUGPARAMS(testName));
SkOpCoincidence coincidence(&globalState);
SkScalar scaleFactor = SkTMax(ScaleFactor(one), ScaleFactor(two));
SkPath scaledOne, scaledTwo;
const SkPath* minuend, * subtrahend;
if (scaleFactor > SK_Scalar1) {
ScalePath(one, 1.f / scaleFactor, &scaledOne);
minuend = &scaledOne;
ScalePath(two, 1.f / scaleFactor, &scaledTwo);
subtrahend = &scaledTwo;
} else {
minuend = &one;
subtrahend = &two;
}
if (op == kReverseDifference_SkPathOp) {
using std::swap;
swap(minuend, subtrahend);
op = kDifference_SkPathOp;
}
#if DEBUG_SORT
SkPathOpsDebug::gSortCount = SkPathOpsDebug::gSortCountDefault;
#endif
// turn path into list of segments
SkOpEdgeBuilder builder(*minuend, contourList, &globalState);
if (builder.unparseable()) {
return false;
}
const int xorMask = builder.xorMask();
builder.addOperand(*subtrahend);
if (!builder.finish()) {
return false;
}
#if DEBUG_DUMP_SEGMENTS
contourList->dumpSegments("seg", op);
#endif
const int xorOpMask = builder.xorMask();
if (!SortContourList(&contourList, xorMask == kEvenOdd_PathOpsMask,
xorOpMask == kEvenOdd_PathOpsMask)) {
result->reset();
result->setFillType(fillType);
return true;
}
// find all intersections between segments
SkOpContour* current = contourList;
do {
SkOpContour* next = current;
while (AddIntersectTs(current, next, &coincidence)
&& (next = next->next()))
;
} while ((current = current->next()));
#if DEBUG_VALIDATE
globalState.setPhase(SkOpPhase::kWalking);
#endif
bool success = HandleCoincidence(contourList, &coincidence);
#if DEBUG_COIN
globalState.debugAddToGlobalCoinDicts();
#endif
if (!success) {
return false;
}
#if DEBUG_ALIGNMENT
contourList->dumpSegments("aligned");
#endif
// construct closed contours
result->reset();
result->setFillType(fillType);
SkPathWriter wrapper(*result);
if (!bridgeOp(contourList, op, xorMask, xorOpMask, &wrapper)) {
return false;
}
wrapper.assemble(); // if some edges could not be resolved, assemble remaining
#if DEBUG_T_SECT_LOOP_COUNT
{
SkAutoMutexAcquire autoM(debugWorstLoop);
if (!gVerboseFinalize) {
gVerboseFinalize = &ReportPathOpsDebugging;
}
debugWorstState.debugDoYourWorst(&globalState);
}
#endif
if (scaleFactor > 1) {
ScalePath(*result, scaleFactor, result);
}
return true;
}
bool Op(const SkPath& one, const SkPath& two, SkPathOp op, SkPath* result) {
#if DEBUG_DUMP_VERIFY
if (SkPathOpsDebug::gVerifyOp) {
if (!OpDebug(one, two, op, result SkDEBUGPARAMS(false) SkDEBUGPARAMS(nullptr))) {
SkPathOpsDebug::ReportOpFail(one, two, op);
return false;
}
SkPathOpsDebug::VerifyOp(one, two, op, *result);
return true;
}
#endif
return OpDebug(one, two, op, result SkDEBUGPARAMS(true) SkDEBUGPARAMS(nullptr));
}
|