1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkAddIntersections.h"
#include "SkOpEdgeBuilder.h"
#include "SkPathOpsCommon.h"
#include "SkPathWriter.h"
static SkOpSegment* findChaseOp(SkTDArray<SkOpSpan*>& chase, int* tIndex, int* endIndex) {
while (chase.count()) {
SkOpSpan* span;
chase.pop(&span);
const SkOpSpan& backPtr = span->fOther->span(span->fOtherIndex);
SkOpSegment* segment = backPtr.fOther;
*tIndex = backPtr.fOtherIndex;
bool sortable = true;
bool done = true;
*endIndex = -1;
if (const SkOpAngle* last = segment->activeAngle(*tIndex, tIndex, endIndex, &done,
&sortable)) {
if (last->unorderable()) {
continue;
}
*tIndex = last->start();
*endIndex = last->end();
#if TRY_ROTATE
*chase.insert(0) = span;
#else
*chase.append() = span;
#endif
return last->segment();
}
if (done) {
continue;
}
if (!sortable) {
continue;
}
// find first angle, initialize winding to computed fWindSum
const SkOpAngle* angle = segment->spanToAngle(*tIndex, *endIndex);
if (!angle) {
continue;
}
const SkOpAngle* firstAngle = angle;
SkDEBUGCODE(bool loop = false);
int winding;
do {
angle = angle->next();
SkASSERT(angle != firstAngle || !loop);
SkDEBUGCODE(loop |= angle == firstAngle);
segment = angle->segment();
winding = segment->windSum(angle);
} while (winding == SK_MinS32);
int sumMiWinding = segment->updateWindingReverse(angle);
int sumSuWinding = segment->updateOppWindingReverse(angle);
if (segment->operand()) {
SkTSwap<int>(sumMiWinding, sumSuWinding);
}
SkOpSegment* first = NULL;
while ((angle = angle->next()) != firstAngle) {
segment = angle->segment();
int start = angle->start();
int end = angle->end();
int maxWinding, sumWinding, oppMaxWinding, oppSumWinding;
segment->setUpWindings(start, end, &sumMiWinding, &sumSuWinding,
&maxWinding, &sumWinding, &oppMaxWinding, &oppSumWinding);
if (!segment->done(angle)) {
if (!first) {
first = segment;
*tIndex = start;
*endIndex = end;
}
// OPTIMIZATION: should this also add to the chase?
(void) segment->markAngle(maxWinding, sumWinding, oppMaxWinding,
oppSumWinding, angle);
}
}
if (first) {
#if TRY_ROTATE
*chase.insert(0) = span;
#else
*chase.append() = span;
#endif
return first;
}
}
return NULL;
}
/*
static bool windingIsActive(int winding, int oppWinding, int spanWinding, int oppSpanWinding,
bool windingIsOp, PathOp op) {
bool active = windingIsActive(winding, spanWinding);
if (!active) {
return false;
}
if (oppSpanWinding && windingIsActive(oppWinding, oppSpanWinding)) {
switch (op) {
case kIntersect_Op:
case kUnion_Op:
return true;
case kDifference_Op: {
int absSpan = abs(spanWinding);
int absOpp = abs(oppSpanWinding);
return windingIsOp ? absSpan < absOpp : absSpan > absOpp;
}
case kXor_Op:
return spanWinding != oppSpanWinding;
default:
SkASSERT(0);
}
}
bool opActive = oppWinding != 0;
return gOpLookup[op][opActive][windingIsOp];
}
*/
static bool bridgeOp(SkTArray<SkOpContour*, true>& contourList, const SkPathOp op,
const int xorMask, const int xorOpMask, SkPathWriter* simple) {
bool firstContour = true;
bool unsortable = false;
bool topUnsortable = false;
bool firstPass = true;
SkPoint lastTopLeft;
SkPoint topLeft = {SK_ScalarMin, SK_ScalarMin};
do {
int index, endIndex;
bool topDone;
bool onlyVertical = false;
lastTopLeft = topLeft;
SkOpSegment* current = FindSortableTop(contourList, SkOpAngle::kBinarySingle, &firstContour,
&index, &endIndex, &topLeft, &topUnsortable, &topDone, &onlyVertical, firstPass);
if (!current) {
if ((!topUnsortable || firstPass) && !topDone) {
SkASSERT(topLeft.fX != SK_ScalarMin && topLeft.fY != SK_ScalarMin);
if (lastTopLeft.fX == SK_ScalarMin && lastTopLeft.fY == SK_ScalarMin) {
if (firstPass) {
firstPass = false;
} else {
break;
}
}
topLeft.fX = topLeft.fY = SK_ScalarMin;
continue;
}
break;
} else if (onlyVertical) {
break;
}
firstPass = !topUnsortable || lastTopLeft != topLeft;
SkTDArray<SkOpSpan*> chase;
do {
if (current->activeOp(index, endIndex, xorMask, xorOpMask, op)) {
do {
if (!unsortable && current->done()) {
break;
}
SkASSERT(unsortable || !current->done());
int nextStart = index;
int nextEnd = endIndex;
SkOpSegment* next = current->findNextOp(&chase, &nextStart, &nextEnd,
&unsortable, op, xorMask, xorOpMask);
if (!next) {
if (!unsortable && simple->hasMove()
&& current->verb() != SkPath::kLine_Verb
&& !simple->isClosed()) {
current->addCurveTo(index, endIndex, simple, true);
#if DEBUG_ACTIVE_SPANS
if (!simple->isClosed()) {
DebugShowActiveSpans(contourList);
}
#endif
// SkASSERT(simple->isClosed());
}
break;
}
#if DEBUG_FLOW
SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__,
current->debugID(), current->xyAtT(index).fX, current->xyAtT(index).fY,
current->xyAtT(endIndex).fX, current->xyAtT(endIndex).fY);
#endif
current->addCurveTo(index, endIndex, simple, true);
current = next;
index = nextStart;
endIndex = nextEnd;
} while (!simple->isClosed() && (!unsortable
|| !current->done(SkMin32(index, endIndex))));
if (current->activeWinding(index, endIndex) && !simple->isClosed()) {
// FIXME : add to simplify, xor cpaths
int min = SkMin32(index, endIndex);
if (!unsortable && !simple->isEmpty()) {
unsortable = current->checkSmall(min);
}
if (!current->done(min)) {
current->addCurveTo(index, endIndex, simple, true);
current->markDoneBinary(min);
}
}
simple->close();
} else {
SkOpSpan* last = current->markAndChaseDoneBinary(index, endIndex);
if (last && !last->fChased && !last->fLoop) {
last->fChased = true;
SkASSERT(!SkPathOpsDebug::ChaseContains(chase, last));
*chase.append() = last;
#if DEBUG_WINDING
SkDebugf("%s chase.append id=%d windSum=%d small=%d\n", __FUNCTION__,
last->fOther->span(last->fOtherIndex).fOther->debugID(), last->fWindSum,
last->fSmall);
#endif
}
}
current = findChaseOp(chase, &index, &endIndex);
#if DEBUG_ACTIVE_SPANS
DebugShowActiveSpans(contourList);
#endif
if (!current) {
break;
}
} while (true);
} while (true);
return simple->someAssemblyRequired();
}
// pretty picture:
// https://docs.google.com/a/google.com/drawings/d/1sPV8rPfpEFXymBp3iSbDRWAycp1b-7vD9JP2V-kn9Ss/edit?usp=sharing
static const SkPathOp gOpInverse[kReverseDifference_PathOp + 1][2][2] = {
// inside minuend outside minuend
// inside subtrahend outside subtrahend inside subtrahend outside subtrahend
{{ kDifference_PathOp, kIntersect_PathOp }, { kUnion_PathOp, kReverseDifference_PathOp }},
{{ kIntersect_PathOp, kDifference_PathOp }, { kReverseDifference_PathOp, kUnion_PathOp }},
{{ kUnion_PathOp, kReverseDifference_PathOp }, { kDifference_PathOp, kIntersect_PathOp }},
{{ kXOR_PathOp, kXOR_PathOp }, { kXOR_PathOp, kXOR_PathOp }},
{{ kReverseDifference_PathOp, kUnion_PathOp }, { kIntersect_PathOp, kDifference_PathOp }},
};
static const bool gOutInverse[kReverseDifference_PathOp + 1][2][2] = {
{{ false, false }, { true, false }}, // diff
{{ false, false }, { false, true }}, // sect
{{ false, true }, { true, true }}, // union
{{ false, true }, { true, false }}, // xor
{{ false, true }, { false, false }}, // rev diff
};
bool Op(const SkPath& one, const SkPath& two, SkPathOp op, SkPath* result) {
#if DEBUG_SHOW_TEST_NAME
char* debugName = DEBUG_FILENAME_STRING;
if (debugName && debugName[0]) {
SkPathOpsDebug::BumpTestName(debugName);
SkPathOpsDebug::ShowPath(one, two, op, debugName);
}
#endif
op = gOpInverse[op][one.isInverseFillType()][two.isInverseFillType()];
SkPath::FillType fillType = gOutInverse[op][one.isInverseFillType()][two.isInverseFillType()]
? SkPath::kInverseEvenOdd_FillType : SkPath::kEvenOdd_FillType;
const SkPath* minuend = &one;
const SkPath* subtrahend = &two;
if (op == kReverseDifference_PathOp) {
minuend = &two;
subtrahend = &one;
op = kDifference_PathOp;
}
#if DEBUG_SORT || DEBUG_SWAP_TOP
SkPathOpsDebug::gSortCount = SkPathOpsDebug::gSortCountDefault;
#endif
// turn path into list of segments
SkTArray<SkOpContour> contours;
// FIXME: add self-intersecting cubics' T values to segment
SkOpEdgeBuilder builder(*minuend, contours);
const int xorMask = builder.xorMask();
builder.addOperand(*subtrahend);
if (!builder.finish()) {
return false;
}
result->reset();
result->setFillType(fillType);
const int xorOpMask = builder.xorMask();
SkTArray<SkOpContour*, true> contourList;
MakeContourList(contours, contourList, xorMask == kEvenOdd_PathOpsMask,
xorOpMask == kEvenOdd_PathOpsMask);
SkOpContour** currentPtr = contourList.begin();
if (!currentPtr) {
return true;
}
SkOpContour** listEnd = contourList.end();
// find all intersections between segments
do {
SkOpContour** nextPtr = currentPtr;
SkOpContour* current = *currentPtr++;
if (current->containsCubics()) {
AddSelfIntersectTs(current);
}
SkOpContour* next;
do {
next = *nextPtr++;
} while (AddIntersectTs(current, next) && nextPtr != listEnd);
} while (currentPtr != listEnd);
// eat through coincident edges
int total = 0;
int index;
for (index = 0; index < contourList.count(); ++index) {
total += contourList[index]->segments().count();
}
if (!HandleCoincidence(&contourList, total)) {
return false;
}
// construct closed contours
SkPathWriter wrapper(*result);
bridgeOp(contourList, op, xorMask, xorOpMask, &wrapper);
{ // if some edges could not be resolved, assemble remaining fragments
SkPath temp;
temp.setFillType(fillType);
SkPathWriter assembled(temp);
Assemble(wrapper, &assembled);
*result = *assembled.nativePath();
result->setFillType(fillType);
}
return true;
}
|