1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkPathOpsBounds.h"
#include "SkPathOpsRect.h"
#include "SkPathOpsCurve.h"
// this cheats and assumes that the perpendicular to the point is the closest ray to the curve
// this case (where the line and the curve are nearly coincident) may be the only case that counts
double SkDCurve::nearPoint(SkPath::Verb verb, const SkDPoint& xy, const SkDPoint& opp) const {
int count = SkPathOpsVerbToPoints(verb);
double minX = fCubic.fPts[0].fX;
double maxX = minX;
for (int index = 0; index < count; ++index) {
minX = SkTMin(minX, fCubic.fPts[index].fX);
maxX = SkTMax(maxX, fCubic.fPts[index].fX);
}
if (!AlmostBetweenUlps(minX, xy.fX, maxX)) {
return -1;
}
double minY = fCubic.fPts[0].fY;
double maxY = minY;
for (int index = 0; index < count; ++index) {
minY = SkTMin(minY, fCubic.fPts[index].fY);
maxY = SkTMax(maxY, fCubic.fPts[index].fY);
}
if (!AlmostBetweenUlps(minY, xy.fY, maxY)) {
return -1;
}
SkIntersections i;
SkDLine perp = {{ xy, { xy.fX + opp.fY - xy.fY, xy.fY + xy.fX - opp.fX }}};
(*CurveDIntersectRay[verb])(*this, perp, &i);
int minIndex = -1;
double minDist = FLT_MAX;
for (int index = 0; index < i.used(); ++index) {
double dist = xy.distance(i.pt(index));
if (minDist > dist) {
minDist = dist;
minIndex = index;
}
}
if (minIndex < 0) {
return -1;
}
double largest = SkTMax(SkTMax(maxX, maxY), -SkTMin(minX, minY));
if (!AlmostEqualUlps_Pin(largest, largest + minDist)) { // is distance within ULPS tolerance?
return -1;
}
return SkPinT(i[0][minIndex]);
}
void SkDCurve::offset(SkPath::Verb verb, const SkDVector& off) {
int count = SkPathOpsVerbToPoints(verb);
for (int index = 0; index < count; ++index) {
fCubic.fPts[index] += off;
}
}
void SkDCurve::setConicBounds(const SkPoint curve[3], SkScalar curveWeight,
double tStart, double tEnd, SkPathOpsBounds* bounds) {
SkDConic dCurve;
dCurve.set(curve, curveWeight);
SkDRect dRect;
dRect.setBounds(dCurve, fConic, tStart, tEnd);
bounds->set(SkDoubleToScalar(dRect.fLeft), SkDoubleToScalar(dRect.fTop),
SkDoubleToScalar(dRect.fRight), SkDoubleToScalar(dRect.fBottom));
}
void SkDCurve::setCubicBounds(const SkPoint curve[4], SkScalar ,
double tStart, double tEnd, SkPathOpsBounds* bounds) {
SkDCubic dCurve;
dCurve.set(curve);
SkDRect dRect;
dRect.setBounds(dCurve, fCubic, tStart, tEnd);
bounds->set(SkDoubleToScalar(dRect.fLeft), SkDoubleToScalar(dRect.fTop),
SkDoubleToScalar(dRect.fRight), SkDoubleToScalar(dRect.fBottom));
}
void SkDCurve::setQuadBounds(const SkPoint curve[3], SkScalar ,
double tStart, double tEnd, SkPathOpsBounds* bounds) {
SkDQuad dCurve;
dCurve.set(curve);
SkDRect dRect;
dRect.setBounds(dCurve, fQuad, tStart, tEnd);
bounds->set(SkDoubleToScalar(dRect.fLeft), SkDoubleToScalar(dRect.fTop),
SkDoubleToScalar(dRect.fRight), SkDoubleToScalar(dRect.fBottom));
}
|