aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/pathops/SkPathOpsCubic.cpp
blob: eaf9062476a3ff18edffa20ac68b9f9b58c2967f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkGeometry.h"
#include "SkLineParameters.h"
#include "SkPathOpsConic.h"
#include "SkPathOpsCubic.h"
#include "SkPathOpsCurve.h"
#include "SkPathOpsLine.h"
#include "SkPathOpsQuad.h"
#include "SkPathOpsRect.h"
#include "SkTSort.h"

const int SkDCubic::gPrecisionUnit = 256;  // FIXME: test different values in test framework

void SkDCubic::align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const {
    if (fPts[endIndex].fX == fPts[ctrlIndex].fX) {
        dstPt->fX = fPts[endIndex].fX;
    }
    if (fPts[endIndex].fY == fPts[ctrlIndex].fY) {
        dstPt->fY = fPts[endIndex].fY;
    }
}

// give up when changing t no longer moves point
// also, copy point rather than recompute it when it does change
double SkDCubic::binarySearch(double min, double max, double axisIntercept,
        SearchAxis xAxis) const {
    double t = (min + max) / 2;
    double step = (t - min) / 2;
    SkDPoint cubicAtT = ptAtT(t);
    double calcPos = (&cubicAtT.fX)[xAxis];
    double calcDist = calcPos - axisIntercept;
    do {
        double priorT = t - step;
        SkOPASSERT(priorT >= min);
        SkDPoint lessPt = ptAtT(priorT);
        if (approximately_equal_half(lessPt.fX, cubicAtT.fX)
                && approximately_equal_half(lessPt.fY, cubicAtT.fY)) {
            return -1;  // binary search found no point at this axis intercept
        }
        double lessDist = (&lessPt.fX)[xAxis] - axisIntercept;
#if DEBUG_CUBIC_BINARY_SEARCH
        SkDebugf("t=%1.9g calc=%1.9g dist=%1.9g step=%1.9g less=%1.9g\n", t, calcPos, calcDist,
                step, lessDist);
#endif
        double lastStep = step;
        step /= 2;
        if (calcDist > 0 ? calcDist > lessDist : calcDist < lessDist) {
            t = priorT;
        } else {
            double nextT = t + lastStep;
            if (nextT > max) {
                return -1;
            }
            SkDPoint morePt = ptAtT(nextT);
            if (approximately_equal_half(morePt.fX, cubicAtT.fX)
                    && approximately_equal_half(morePt.fY, cubicAtT.fY)) {
                return -1;  // binary search found no point at this axis intercept
            }
            double moreDist = (&morePt.fX)[xAxis] - axisIntercept;
            if (calcDist > 0 ? calcDist <= moreDist : calcDist >= moreDist) {
                continue;
            }
            t = nextT;
        }
        SkDPoint testAtT = ptAtT(t);
        cubicAtT = testAtT;
        calcPos = (&cubicAtT.fX)[xAxis];
        calcDist = calcPos - axisIntercept;
    } while (!approximately_equal(calcPos, axisIntercept));
    return t;
}

// FIXME: cache keep the bounds and/or precision with the caller?
double SkDCubic::calcPrecision() const {
    SkDRect dRect;
    dRect.setBounds(*this);  // OPTIMIZATION: just use setRawBounds ?
    double width = dRect.fRight - dRect.fLeft;
    double height = dRect.fBottom - dRect.fTop;
    return (width > height ? width : height) / gPrecisionUnit;
}


/* classic one t subdivision */
static void interp_cubic_coords(const double* src, double* dst, double t) {
    double ab = SkDInterp(src[0], src[2], t);
    double bc = SkDInterp(src[2], src[4], t);
    double cd = SkDInterp(src[4], src[6], t);
    double abc = SkDInterp(ab, bc, t);
    double bcd = SkDInterp(bc, cd, t);
    double abcd = SkDInterp(abc, bcd, t);

    dst[0] = src[0];
    dst[2] = ab;
    dst[4] = abc;
    dst[6] = abcd;
    dst[8] = bcd;
    dst[10] = cd;
    dst[12] = src[6];
}

SkDCubicPair SkDCubic::chopAt(double t) const {
    SkDCubicPair dst;
    if (t == 0.5) {
        dst.pts[0] = fPts[0];
        dst.pts[1].fX = (fPts[0].fX + fPts[1].fX) / 2;
        dst.pts[1].fY = (fPts[0].fY + fPts[1].fY) / 2;
        dst.pts[2].fX = (fPts[0].fX + 2 * fPts[1].fX + fPts[2].fX) / 4;
        dst.pts[2].fY = (fPts[0].fY + 2 * fPts[1].fY + fPts[2].fY) / 4;
        dst.pts[3].fX = (fPts[0].fX + 3 * (fPts[1].fX + fPts[2].fX) + fPts[3].fX) / 8;
        dst.pts[3].fY = (fPts[0].fY + 3 * (fPts[1].fY + fPts[2].fY) + fPts[3].fY) / 8;
        dst.pts[4].fX = (fPts[1].fX + 2 * fPts[2].fX + fPts[3].fX) / 4;
        dst.pts[4].fY = (fPts[1].fY + 2 * fPts[2].fY + fPts[3].fY) / 4;
        dst.pts[5].fX = (fPts[2].fX + fPts[3].fX) / 2;
        dst.pts[5].fY = (fPts[2].fY + fPts[3].fY) / 2;
        dst.pts[6] = fPts[3];
        return dst;
    }
    interp_cubic_coords(&fPts[0].fX, &dst.pts[0].fX, t);
    interp_cubic_coords(&fPts[0].fY, &dst.pts[0].fY, t);
    return dst;
}

void SkDCubic::Coefficients(const double* src, double* A, double* B, double* C, double* D) {
    *A = src[6];  // d
    *B = src[4] * 3;  // 3*c
    *C = src[2] * 3;  // 3*b
    *D = src[0];  // a
    *A -= *D - *C + *B;     // A =   -a + 3*b - 3*c + d
    *B += 3 * *D - 2 * *C;  // B =  3*a - 6*b + 3*c
    *C -= 3 * *D;           // C = -3*a + 3*b
}

bool SkDCubic::endsAreExtremaInXOrY() const {
    return (between(fPts[0].fX, fPts[1].fX, fPts[3].fX)
            && between(fPts[0].fX, fPts[2].fX, fPts[3].fX))
            || (between(fPts[0].fY, fPts[1].fY, fPts[3].fY)
            && between(fPts[0].fY, fPts[2].fY, fPts[3].fY));
}

// Do a quick reject by rotating all points relative to a line formed by
// a pair of one cubic's points. If the 2nd cubic's points
// are on the line or on the opposite side from the 1st cubic's 'odd man', the
// curves at most intersect at the endpoints.
/* if returning true, check contains true if cubic's hull collapsed, making the cubic linear
   if returning false, check contains true if the the cubic pair have only the end point in common
*/
bool SkDCubic::hullIntersects(const SkDPoint* pts, int ptCount, bool* isLinear) const {
    bool linear = true;
    char hullOrder[4];
    int hullCount = convexHull(hullOrder);
    int end1 = hullOrder[0];
    int hullIndex = 0;
    const SkDPoint* endPt[2];
    endPt[0] = &fPts[end1];
    do {
        hullIndex = (hullIndex + 1) % hullCount;
        int end2 = hullOrder[hullIndex];
        endPt[1] = &fPts[end2];
        double origX = endPt[0]->fX;
        double origY = endPt[0]->fY;
        double adj = endPt[1]->fX - origX;
        double opp = endPt[1]->fY - origY;
        int oddManMask = other_two(end1, end2);
        int oddMan = end1 ^ oddManMask;
        double sign = (fPts[oddMan].fY - origY) * adj - (fPts[oddMan].fX - origX) * opp;
        int oddMan2 = end2 ^ oddManMask;
        double sign2 = (fPts[oddMan2].fY - origY) * adj - (fPts[oddMan2].fX - origX) * opp;
        if (sign * sign2 < 0) {
            continue;
        }
        if (approximately_zero(sign)) {
            sign = sign2;
            if (approximately_zero(sign)) {
                continue;
            }
        }
        linear = false;
        bool foundOutlier = false;
        for (int n = 0; n < ptCount; ++n) {
            double test = (pts[n].fY - origY) * adj - (pts[n].fX - origX) * opp;
            if (test * sign > 0 && !precisely_zero(test)) {
                foundOutlier = true;
                break;
            }
        }
        if (!foundOutlier) {
            return false;
        }
        endPt[0] = endPt[1];
        end1 = end2;
    } while (hullIndex);
    *isLinear = linear;
    return true;
}

bool SkDCubic::hullIntersects(const SkDCubic& c2, bool* isLinear) const {
    return hullIntersects(c2.fPts, c2.kPointCount, isLinear);
}

bool SkDCubic::hullIntersects(const SkDQuad& quad, bool* isLinear) const {
    return hullIntersects(quad.fPts, quad.kPointCount, isLinear);
}

bool SkDCubic::hullIntersects(const SkDConic& conic, bool* isLinear) const {

    return hullIntersects(conic.fPts, isLinear);
}

bool SkDCubic::isLinear(int startIndex, int endIndex) const {
    if (fPts[0].approximatelyDEqual(fPts[3]))  {
        return ((const SkDQuad *) this)->isLinear(0, 2);
    }
    SkLineParameters lineParameters;
    lineParameters.cubicEndPoints(*this, startIndex, endIndex);
    // FIXME: maybe it's possible to avoid this and compare non-normalized
    lineParameters.normalize();
    double tiniest = SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY),
            fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY), fPts[3].fX), fPts[3].fY);
    double largest = SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY),
            fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY), fPts[3].fX), fPts[3].fY);
    largest = SkTMax(largest, -tiniest);
    double distance = lineParameters.controlPtDistance(*this, 1);
    if (!approximately_zero_when_compared_to(distance, largest)) {
        return false;
    }
    distance = lineParameters.controlPtDistance(*this, 2);
    return approximately_zero_when_compared_to(distance, largest);
}

bool SkDCubic::ComplexBreak(const SkPoint pointsPtr[4], SkScalar* t) {
    SkScalar d[3];
    SkCubicType cubicType = SkClassifyCubic(pointsPtr, d);
    if (cubicType == kLoop_SkCubicType) {
        // crib code from gpu path utils that finds t values where loop self-intersects
        // use it to find mid of t values which should be a friendly place to chop
        SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
        SkScalar ls = d[1] - tempSqrt;
        SkScalar lt = 2.f * d[0];
        SkScalar ms = d[1] + tempSqrt;
        SkScalar mt = 2.f * d[0];
        if (roughly_between(0, ls, lt) && roughly_between(0, ms, mt)) {
            ls = ls / lt;
            ms = ms / mt;
            SkASSERT(roughly_between(0, ls, 1) && roughly_between(0, ms, 1));
            *t = (ls + ms) / 2;
            SkASSERT(roughly_between(0, *t, 1));
            return *t > 0 && *t < 1;
        }
    } else if (kSerpentine_SkCubicType == cubicType || kCusp_SkCubicType == cubicType) {
        SkDCubic cubic;
        cubic.set(pointsPtr);
        double inflectionTs[2];
        int infTCount = cubic.findInflections(inflectionTs);
        if (infTCount == 2) {
            double maxCurvature[3];
            int roots = cubic.findMaxCurvature(maxCurvature);
#if DEBUG_CUBIC_SPLIT
            SkDebugf("%s\n", __FUNCTION__);
            cubic.dump();
            for (int index = 0; index < infTCount; ++index) {
                SkDebugf("inflectionsTs[%d]=%1.9g ", index, inflectionTs[index]);
                SkDPoint pt = cubic.ptAtT(inflectionTs[index]);
                SkDVector dPt = cubic.dxdyAtT(inflectionTs[index]);
                SkDLine perp = {{pt - dPt, pt + dPt}};
                perp.dump();
            }
            for (int index = 0; index < roots; ++index) {
                SkDebugf("maxCurvature[%d]=%1.9g ", index, maxCurvature[index]);
                SkDPoint pt = cubic.ptAtT(maxCurvature[index]);
                SkDVector dPt = cubic.dxdyAtT(maxCurvature[index]);
                SkDLine perp = {{pt - dPt, pt + dPt}};
                perp.dump();
            }
#endif
            for (int index = 0; index < roots; ++index) {
                if (between(inflectionTs[0], maxCurvature[index], inflectionTs[1])) {
                    *t = maxCurvature[index];
                    return *t > 0 && *t < 1;
                }
            }
        } else if (infTCount == 1) {
            *t = inflectionTs[0];
            return *t > 0 && *t < 1;
        }
    }
    return false;
}

bool SkDCubic::monotonicInX() const {
    return precisely_between(fPts[0].fX, fPts[1].fX, fPts[3].fX)
            && precisely_between(fPts[0].fX, fPts[2].fX, fPts[3].fX);
}

bool SkDCubic::monotonicInY() const {
    return precisely_between(fPts[0].fY, fPts[1].fY, fPts[3].fY)
            && precisely_between(fPts[0].fY, fPts[2].fY, fPts[3].fY);
}

void SkDCubic::otherPts(int index, const SkDPoint* o1Pts[kPointCount - 1]) const {
    int offset = (int) !SkToBool(index);
    o1Pts[0] = &fPts[offset];
    o1Pts[1] = &fPts[++offset];
    o1Pts[2] = &fPts[++offset];
}

int SkDCubic::searchRoots(double extremeTs[6], int extrema, double axisIntercept,
        SearchAxis xAxis, double* validRoots) const {
    extrema += findInflections(&extremeTs[extrema]);
    extremeTs[extrema++] = 0;
    extremeTs[extrema] = 1;
    SkASSERT(extrema < 6);
    SkTQSort(extremeTs, extremeTs + extrema);
    int validCount = 0;
    for (int index = 0; index < extrema; ) {
        double min = extremeTs[index];
        double max = extremeTs[++index];
        if (min == max) {
            continue;
        }
        double newT = binarySearch(min, max, axisIntercept, xAxis);
        if (newT >= 0) {
            if (validCount >= 3) {
                return 0;
            }
            validRoots[validCount++] = newT;
        }
    }
    return validCount;
}

// cubic roots

static const double PI = 3.141592653589793;

// from SkGeometry.cpp (and Numeric Solutions, 5.6)
int SkDCubic::RootsValidT(double A, double B, double C, double D, double t[3]) {
    double s[3];
    int realRoots = RootsReal(A, B, C, D, s);
    int foundRoots = SkDQuad::AddValidTs(s, realRoots, t);
    for (int index = 0; index < realRoots; ++index) {
        double tValue = s[index];
        if (!approximately_one_or_less(tValue) && between(1, tValue, 1.00005)) {
            for (int idx2 = 0; idx2 < foundRoots; ++idx2) {
                if (approximately_equal(t[idx2], 1)) {
                    goto nextRoot;
                }
            }
            SkASSERT(foundRoots < 3);
            t[foundRoots++] = 1;
        } else if (!approximately_zero_or_more(tValue) && between(-0.00005, tValue, 0)) {
            for (int idx2 = 0; idx2 < foundRoots; ++idx2) {
                if (approximately_equal(t[idx2], 0)) {
                    goto nextRoot;
                }
            }
            SkASSERT(foundRoots < 3);
            t[foundRoots++] = 0;
        }
nextRoot:
        ;
    }
    return foundRoots;
}

int SkDCubic::RootsReal(double A, double B, double C, double D, double s[3]) {
#ifdef SK_DEBUG
    // create a string mathematica understands
    // GDB set print repe 15 # if repeated digits is a bother
    //     set print elements 400 # if line doesn't fit
    char str[1024];
    sk_bzero(str, sizeof(str));
    SK_SNPRINTF(str, sizeof(str), "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
            A, B, C, D);
    SkPathOpsDebug::MathematicaIze(str, sizeof(str));
#if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
    SkDebugf("%s\n", str);
#endif
#endif
    if (approximately_zero(A)
            && approximately_zero_when_compared_to(A, B)
            && approximately_zero_when_compared_to(A, C)
            && approximately_zero_when_compared_to(A, D)) {  // we're just a quadratic
        return SkDQuad::RootsReal(B, C, D, s);
    }
    if (approximately_zero_when_compared_to(D, A)
            && approximately_zero_when_compared_to(D, B)
            && approximately_zero_when_compared_to(D, C)) {  // 0 is one root
        int num = SkDQuad::RootsReal(A, B, C, s);
        for (int i = 0; i < num; ++i) {
            if (approximately_zero(s[i])) {
                return num;
            }
        }
        s[num++] = 0;
        return num;
    }
    if (approximately_zero(A + B + C + D)) {  // 1 is one root
        int num = SkDQuad::RootsReal(A, A + B, -D, s);
        for (int i = 0; i < num; ++i) {
            if (AlmostDequalUlps(s[i], 1)) {
                return num;
            }
        }
        s[num++] = 1;
        return num;
    }
    double a, b, c;
    {
        double invA = 1 / A;
        a = B * invA;
        b = C * invA;
        c = D * invA;
    }
    double a2 = a * a;
    double Q = (a2 - b * 3) / 9;
    double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
    double R2 = R * R;
    double Q3 = Q * Q * Q;
    double R2MinusQ3 = R2 - Q3;
    double adiv3 = a / 3;
    double r;
    double* roots = s;
    if (R2MinusQ3 < 0) {   // we have 3 real roots
        // the divide/root can, due to finite precisions, be slightly outside of -1...1
        double theta = acos(SkTPin(R / sqrt(Q3), -1., 1.));
        double neg2RootQ = -2 * sqrt(Q);

        r = neg2RootQ * cos(theta / 3) - adiv3;
        *roots++ = r;

        r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
        if (!AlmostDequalUlps(s[0], r)) {
            *roots++ = r;
        }
        r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
        if (!AlmostDequalUlps(s[0], r) && (roots - s == 1 || !AlmostDequalUlps(s[1], r))) {
            *roots++ = r;
        }
    } else {  // we have 1 real root
        double sqrtR2MinusQ3 = sqrt(R2MinusQ3);
        double A = fabs(R) + sqrtR2MinusQ3;
        A = SkDCubeRoot(A);
        if (R > 0) {
            A = -A;
        }
        if (A != 0) {
            A += Q / A;
        }
        r = A - adiv3;
        *roots++ = r;
        if (AlmostDequalUlps((double) R2, (double) Q3)) {
            r = -A / 2 - adiv3;
            if (!AlmostDequalUlps(s[0], r)) {
                *roots++ = r;
            }
        }
    }
    return static_cast<int>(roots - s);
}

// from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf
// c(t)  = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3
// c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2
//       = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2
static double derivative_at_t(const double* src, double t) {
    double one_t = 1 - t;
    double a = src[0];
    double b = src[2];
    double c = src[4];
    double d = src[6];
    return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t);
}

// OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t?
SkDVector SkDCubic::dxdyAtT(double t) const {
    SkDVector result = { derivative_at_t(&fPts[0].fX, t), derivative_at_t(&fPts[0].fY, t) };
    if (result.fX == 0 && result.fY == 0) {
        if (t == 0) {
            result = fPts[2] - fPts[0];
        } else if (t == 1) {
            result = fPts[3] - fPts[1];
        } else {
            // incomplete
            SkDebugf("!c");
        }
        if (result.fX == 0 && result.fY == 0 && zero_or_one(t)) {
            result = fPts[3] - fPts[0];
        }
    }
    return result;
}

// OPTIMIZE? share code with formulate_F1DotF2
int SkDCubic::findInflections(double tValues[]) const {
    double Ax = fPts[1].fX - fPts[0].fX;
    double Ay = fPts[1].fY - fPts[0].fY;
    double Bx = fPts[2].fX - 2 * fPts[1].fX + fPts[0].fX;
    double By = fPts[2].fY - 2 * fPts[1].fY + fPts[0].fY;
    double Cx = fPts[3].fX + 3 * (fPts[1].fX - fPts[2].fX) - fPts[0].fX;
    double Cy = fPts[3].fY + 3 * (fPts[1].fY - fPts[2].fY) - fPts[0].fY;
    return SkDQuad::RootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues);
}

static void formulate_F1DotF2(const double src[], double coeff[4]) {
    double a = src[2] - src[0];
    double b = src[4] - 2 * src[2] + src[0];
    double c = src[6] + 3 * (src[2] - src[4]) - src[0];
    coeff[0] = c * c;
    coeff[1] = 3 * b * c;
    coeff[2] = 2 * b * b + c * a;
    coeff[3] = a * b;
}

/** SkDCubic'(t) = At^2 + Bt + C, where
    A = 3(-a + 3(b - c) + d)
    B = 6(a - 2b + c)
    C = 3(b - a)
    Solve for t, keeping only those that fit between 0 < t < 1
*/
int SkDCubic::FindExtrema(const double src[], double tValues[2]) {
    // we divide A,B,C by 3 to simplify
    double a = src[0];
    double b = src[2];
    double c = src[4];
    double d = src[6];
    double A = d - a + 3 * (b - c);
    double B = 2 * (a - b - b + c);
    double C = b - a;

    return SkDQuad::RootsValidT(A, B, C, tValues);
}

/*  from SkGeometry.cpp
    Looking for F' dot F'' == 0

    A = b - a
    B = c - 2b + a
    C = d - 3c + 3b - a

    F' = 3Ct^2 + 6Bt + 3A
    F'' = 6Ct + 6B

    F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
*/
int SkDCubic::findMaxCurvature(double tValues[]) const {
    double coeffX[4], coeffY[4];
    int i;
    formulate_F1DotF2(&fPts[0].fX, coeffX);
    formulate_F1DotF2(&fPts[0].fY, coeffY);
    for (i = 0; i < 4; i++) {
        coeffX[i] = coeffX[i] + coeffY[i];
    }
    return RootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues);
}

SkDPoint SkDCubic::ptAtT(double t) const {
    if (0 == t) {
        return fPts[0];
    }
    if (1 == t) {
        return fPts[3];
    }
    double one_t = 1 - t;
    double one_t2 = one_t * one_t;
    double a = one_t2 * one_t;
    double b = 3 * one_t2 * t;
    double t2 = t * t;
    double c = 3 * one_t * t2;
    double d = t2 * t;
    SkDPoint result = {a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX + d * fPts[3].fX,
            a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY + d * fPts[3].fY};
    return result;
}

/*
 Given a cubic c, t1, and t2, find a small cubic segment.

 The new cubic is defined as points A, B, C, and D, where
 s1 = 1 - t1
 s2 = 1 - t2
 A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1
 D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2

 We don't have B or C. So We define two equations to isolate them.
 First, compute two reference T values 1/3 and 2/3 from t1 to t2:

 c(at (2*t1 + t2)/3) == E
 c(at (t1 + 2*t2)/3) == F

 Next, compute where those values must be if we know the values of B and C:

 _12   =  A*2/3 + B*1/3
 12_   =  A*1/3 + B*2/3
 _23   =  B*2/3 + C*1/3
 23_   =  B*1/3 + C*2/3
 _34   =  C*2/3 + D*1/3
 34_   =  C*1/3 + D*2/3
 _123  = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9
 123_  = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9
 _234  = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9
 234_  = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9
 _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3
       =  A*8/27 + B*12/27 + C*6/27 + D*1/27
       =  E
 1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3
       =  A*1/27 + B*6/27 + C*12/27 + D*8/27
       =  F
 E*27  =  A*8    + B*12   + C*6     + D
 F*27  =  A      + B*6    + C*12    + D*8

Group the known values on one side:

 M       = E*27 - A*8 - D     = B*12 + C* 6
 N       = F*27 - A   - D*8   = B* 6 + C*12
 M*2 - N = B*18
 N*2 - M = C*18
 B       = (M*2 - N)/18
 C       = (N*2 - M)/18
 */

static double interp_cubic_coords(const double* src, double t) {
    double ab = SkDInterp(src[0], src[2], t);
    double bc = SkDInterp(src[2], src[4], t);
    double cd = SkDInterp(src[4], src[6], t);
    double abc = SkDInterp(ab, bc, t);
    double bcd = SkDInterp(bc, cd, t);
    double abcd = SkDInterp(abc, bcd, t);
    return abcd;
}

SkDCubic SkDCubic::subDivide(double t1, double t2) const {
    if (t1 == 0 || t2 == 1) {
        if (t1 == 0 && t2 == 1) {
            return *this;
        }
        SkDCubicPair pair = chopAt(t1 == 0 ? t2 : t1);
        SkDCubic dst = t1 == 0 ? pair.first() : pair.second();
        return dst;
    }
    SkDCubic dst;
    double ax = dst[0].fX = interp_cubic_coords(&fPts[0].fX, t1);
    double ay = dst[0].fY = interp_cubic_coords(&fPts[0].fY, t1);
    double ex = interp_cubic_coords(&fPts[0].fX, (t1*2+t2)/3);
    double ey = interp_cubic_coords(&fPts[0].fY, (t1*2+t2)/3);
    double fx = interp_cubic_coords(&fPts[0].fX, (t1+t2*2)/3);
    double fy = interp_cubic_coords(&fPts[0].fY, (t1+t2*2)/3);
    double dx = dst[3].fX = interp_cubic_coords(&fPts[0].fX, t2);
    double dy = dst[3].fY = interp_cubic_coords(&fPts[0].fY, t2);
    double mx = ex * 27 - ax * 8 - dx;
    double my = ey * 27 - ay * 8 - dy;
    double nx = fx * 27 - ax - dx * 8;
    double ny = fy * 27 - ay - dy * 8;
    /* bx = */ dst[1].fX = (mx * 2 - nx) / 18;
    /* by = */ dst[1].fY = (my * 2 - ny) / 18;
    /* cx = */ dst[2].fX = (nx * 2 - mx) / 18;
    /* cy = */ dst[2].fY = (ny * 2 - my) / 18;
    // FIXME: call align() ?
    return dst;
}

void SkDCubic::subDivide(const SkDPoint& a, const SkDPoint& d,
                         double t1, double t2, SkDPoint dst[2]) const {
    SkASSERT(t1 != t2);
    // this approach assumes that the control points computed directly are accurate enough
    SkDCubic sub = subDivide(t1, t2);
    dst[0] = sub[1] + (a - sub[0]);
    dst[1] = sub[2] + (d - sub[3]);
    if (t1 == 0 || t2 == 0) {
        align(0, 1, t1 == 0 ? &dst[0] : &dst[1]);
    }
    if (t1 == 1 || t2 == 1) {
        align(3, 2, t1 == 1 ? &dst[0] : &dst[1]);
    }
    if (AlmostBequalUlps(dst[0].fX, a.fX)) {
        dst[0].fX = a.fX;
    }
    if (AlmostBequalUlps(dst[0].fY, a.fY)) {
        dst[0].fY = a.fY;
    }
    if (AlmostBequalUlps(dst[1].fX, d.fX)) {
        dst[1].fX = d.fX;
    }
    if (AlmostBequalUlps(dst[1].fY, d.fY)) {
        dst[1].fY = d.fY;
    }
}

double SkDCubic::top(const SkDCubic& dCurve, double startT, double endT, SkDPoint*topPt) const {
    double extremeTs[2];
    double topT = -1;
    int roots = SkDCubic::FindExtrema(&fPts[0].fY, extremeTs);
    for (int index = 0; index < roots; ++index) {
        double t = startT + (endT - startT) * extremeTs[index];
        SkDPoint mid = dCurve.ptAtT(t);
        if (topPt->fY > mid.fY || (topPt->fY == mid.fY && topPt->fX > mid.fX)) {
            topT = t;
            *topPt = mid;
        }
    }
    return topT;
}