aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/pathops/SkPathOpsCommon.cpp
blob: 82b93f40727042e912b4e7f0c1ccfcfc4a201927 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkAddIntersections.h"
#include "SkOpCoincidence.h"
#include "SkOpEdgeBuilder.h"
#include "SkPathOpsCommon.h"
#include "SkPathWriter.h"
#include "SkTSort.h"

SkScalar ScaleFactor(const SkPath& path) {
    static const SkScalar twoTo10 = 1024.f;
    SkScalar largest = 0;
    const SkScalar* oneBounds = &path.getBounds().fLeft;
    for (int index = 0; index < 4; ++index) {
        largest = SkTMax(largest, SkScalarAbs(oneBounds[index]));
    }
    SkScalar scale = twoTo10;
    SkScalar next;
    while ((next = scale * twoTo10) < largest) {
        scale = next;
    }
    return scale == twoTo10 ? SK_Scalar1 : scale;
}

void ScalePath(const SkPath& path, SkScalar scale, SkPath* scaled) {
    SkMatrix matrix;
    matrix.setScale(scale, scale);
    *scaled = path;
    scaled->transform(matrix);
}

const SkOpAngle* AngleWinding(SkOpSpanBase* start, SkOpSpanBase* end, int* windingPtr,
        bool* sortablePtr) {
    // find first angle, initialize winding to computed fWindSum
    SkOpSegment* segment = start->segment();
    const SkOpAngle* angle = segment->spanToAngle(start, end);
    if (!angle) {
        *windingPtr = SK_MinS32;
        return nullptr;
    }
    bool computeWinding = false;
    const SkOpAngle* firstAngle = angle;
    bool loop = false;
    bool unorderable = false;
    int winding = SK_MinS32;
    do {
        angle = angle->next();
        if (!angle) {
            return nullptr;
        }
        unorderable |= angle->unorderable();
        if ((computeWinding = unorderable || (angle == firstAngle && loop))) {
            break;    // if we get here, there's no winding, loop is unorderable
        }
        loop |= angle == firstAngle;
        segment = angle->segment();
        winding = segment->windSum(angle);
    } while (winding == SK_MinS32);
    // if the angle loop contains an unorderable span, the angle order may be useless
    // directly compute the winding in this case for each span
    if (computeWinding) {
        firstAngle = angle;
        winding = SK_MinS32;
        do {
            SkOpSpanBase* startSpan = angle->start();
            SkOpSpanBase* endSpan = angle->end();
            SkOpSpan* lesser = startSpan->starter(endSpan);
            int testWinding = lesser->windSum();
            if (testWinding == SK_MinS32) {
                testWinding = lesser->computeWindSum();
            }
            if (testWinding != SK_MinS32) {
                segment = angle->segment();
                winding = testWinding;
            }
            angle = angle->next();
        } while (angle != firstAngle);
    }
    *sortablePtr = !unorderable;
    *windingPtr = winding;
    return angle;
}

SkOpSegment* FindUndone(SkOpContourHead* contourList, SkOpSpanBase** startPtr,
         SkOpSpanBase** endPtr) {
    SkOpSegment* result;
    SkOpContour* contour = contourList;
    do {
        result = contour->undoneSegment(startPtr, endPtr);
        if (result) {
            return result;
        }
    } while ((contour = contour->next()));
    return nullptr;
}

SkOpSegment* FindChase(SkTDArray<SkOpSpanBase*>* chase, SkOpSpanBase** startPtr,
        SkOpSpanBase** endPtr) {
    while (chase->count()) {
        SkOpSpanBase* span;
        chase->pop(&span);
        SkOpSegment* segment = span->segment();
        *startPtr = span->ptT()->next()->span();
        bool done = true;
        *endPtr = nullptr;
        if (SkOpAngle* last = segment->activeAngle(*startPtr, startPtr, endPtr, &done)) {
            *startPtr = last->start();
            *endPtr = last->end();
    #if TRY_ROTATE
            *chase->insert(0) = span;
    #else
            *chase->append() = span;
    #endif
            return last->segment();
        }
        if (done) {
            continue;
        }
        // find first angle, initialize winding to computed wind sum
        int winding;
        bool sortable;
        const SkOpAngle* angle = AngleWinding(*startPtr, *endPtr, &winding, &sortable);
        if (!angle) {
            return nullptr;
        }
        if (winding == SK_MinS32) {
            continue;
        }
        int sumWinding SK_INIT_TO_AVOID_WARNING;
        if (sortable) {
            segment = angle->segment();
            sumWinding = segment->updateWindingReverse(angle);
        }
        SkOpSegment* first = nullptr;
        const SkOpAngle* firstAngle = angle;
        while ((angle = angle->next()) != firstAngle) {
            segment = angle->segment();
            SkOpSpanBase* start = angle->start();
            SkOpSpanBase* end = angle->end();
            int maxWinding SK_INIT_TO_AVOID_WARNING;
            if (sortable) {
                segment->setUpWinding(start, end, &maxWinding, &sumWinding);
            }
            if (!segment->done(angle)) {
                if (!first && (sortable || start->starter(end)->windSum() != SK_MinS32)) {
                    first = segment;
                    *startPtr = start;
                    *endPtr = end;
                }
                // OPTIMIZATION: should this also add to the chase?
                if (sortable) {
                    (void) segment->markAngle(maxWinding, sumWinding, angle);
                }
            }
        }
        if (first) {
       #if TRY_ROTATE
            *chase->insert(0) = span;
       #else
            *chase->append() = span;
       #endif
            return first;
        }
    }
    return nullptr;
}

bool SortContourList(SkOpContourHead** contourList, bool evenOdd, bool oppEvenOdd) {
    SkTDArray<SkOpContour* > list;
    SkOpContour* contour = *contourList;
    do {
        if (contour->count()) {
            contour->setOppXor(contour->operand() ? evenOdd : oppEvenOdd);
            *list.append() = contour;
        }
    } while ((contour = contour->next()));
    int count = list.count();
    if (!count) {
        return false;
    }
    if (count > 1) {
        SkTQSort<SkOpContour>(list.begin(), list.end() - 1);
    }
    contour = list[0];
    SkOpContourHead* contourHead = static_cast<SkOpContourHead*>(contour);
    contour->globalState()->setContourHead(contourHead);
    *contourList = contourHead;
    for (int index = 1; index < count; ++index) {
        SkOpContour* next = list[index];
        contour->setNext(next);
        contour = next;
    }
    contour->setNext(nullptr);
    return true;
}

class DistanceLessThan {
public:
    DistanceLessThan(double* distances) : fDistances(distances) { }
    double* fDistances;
    bool operator()(const int one, const int two) {
        return fDistances[one] < fDistances[two];
    }
};

    /*
        check start and end of each contour
        if not the same, record them
        match them up
        connect closest
        reassemble contour pieces into new path
    */
void Assemble(const SkPathWriter& path, SkPathWriter* simple) {
    SkChunkAlloc allocator(4096);  // FIXME: constant-ize, tune
    SkOpContourHead contour;
    SkOpGlobalState globalState(&contour, &allocator  SkDEBUGPARAMS(false)
                                SkDEBUGPARAMS(nullptr));
#if DEBUG_SHOW_TEST_NAME
    SkDebugf("</div>\n");
#endif
#if DEBUG_PATH_CONSTRUCTION
    SkDebugf("%s\n", __FUNCTION__);
#endif
    SkOpEdgeBuilder builder(path, &contour, &globalState);
    builder.finish();
    SkTDArray<const SkOpContour* > runs;  // indices of partial contours
    const SkOpContour* eContour = builder.head();
    do {
        if (!eContour->count()) {
            continue;
        }
        const SkPoint& eStart = eContour->start();
        const SkPoint& eEnd = eContour->end();
#if DEBUG_ASSEMBLE
        SkDebugf("%s contour", __FUNCTION__);
        if (!SkDPoint::ApproximatelyEqual(eStart, eEnd)) {
            SkDebugf("[%d]", runs.count());
        } else {
            SkDebugf("   ");
        }
        SkDebugf(" start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n",
                eStart.fX, eStart.fY, eEnd.fX, eEnd.fY);
#endif
        if (SkDPoint::ApproximatelyEqual(eStart, eEnd)) {
            eContour->toPath(simple);
            continue;
        }
        *runs.append() = eContour;
    } while ((eContour = eContour->next()));
    int count = runs.count();
    if (count == 0) {
        return;
    }
    SkTDArray<int> sLink, eLink;
    sLink.append(count);
    eLink.append(count);
    int rIndex, iIndex;
    for (rIndex = 0; rIndex < count; ++rIndex) {
        sLink[rIndex] = eLink[rIndex] = SK_MaxS32;
    }
    const int ends = count * 2;  // all starts and ends
    const int entries = (ends - 1) * count;  // folded triangle : n * (n - 1) / 2
    SkTDArray<double> distances;
    distances.append(entries);
    for (rIndex = 0; rIndex < ends - 1; ++rIndex) {
        const SkOpContour* oContour = runs[rIndex >> 1];
        const SkPoint& oPt = rIndex & 1 ? oContour->end() : oContour->start();
        const int row = rIndex < count - 1 ? rIndex * ends : (ends - rIndex - 2)
                * ends - rIndex - 1;
        for (iIndex = rIndex + 1; iIndex < ends; ++iIndex) {
            const SkOpContour* iContour = runs[iIndex >> 1];
            const SkPoint& iPt = iIndex & 1 ? iContour->end() : iContour->start();
            double dx = iPt.fX - oPt.fX;
            double dy = iPt.fY - oPt.fY;
            double dist = dx * dx + dy * dy;
            distances[row + iIndex] = dist;  // oStart distance from iStart
        }
    }
    SkTDArray<int> sortedDist;
    sortedDist.append(entries);
    for (rIndex = 0; rIndex < entries; ++rIndex) {
        sortedDist[rIndex] = rIndex;
    }
    SkTQSort<int>(sortedDist.begin(), sortedDist.end() - 1, DistanceLessThan(distances.begin()));
    int remaining = count;  // number of start/end pairs
    for (rIndex = 0; rIndex < entries; ++rIndex) {
        int pair = sortedDist[rIndex];
        int row = pair / ends;
        int col = pair - row * ends;
        int thingOne = row < col ? row : ends - row - 2;
        int ndxOne = thingOne >> 1;
        bool endOne = thingOne & 1;
        int* linkOne = endOne ? eLink.begin() : sLink.begin();
        if (linkOne[ndxOne] != SK_MaxS32) {
            continue;
        }
        int thingTwo = row < col ? col : ends - row + col - 1;
        int ndxTwo = thingTwo >> 1;
        bool endTwo = thingTwo & 1;
        int* linkTwo = endTwo ? eLink.begin() : sLink.begin();
        if (linkTwo[ndxTwo] != SK_MaxS32) {
            continue;
        }
        SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]);
        bool flip = endOne == endTwo;
        linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo;
        linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne;
        if (!--remaining) {
            break;
        }
    }
    SkASSERT(!remaining);
#if DEBUG_ASSEMBLE
    for (rIndex = 0; rIndex < count; ++rIndex) {
        int s = sLink[rIndex];
        int e = eLink[rIndex];
        SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e',
                s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e);
    }
#endif
    rIndex = 0;
    do {
        bool forward = true;
        bool first = true;
        int sIndex = sLink[rIndex];
        SkASSERT(sIndex != SK_MaxS32);
        sLink[rIndex] = SK_MaxS32;
        int eIndex;
        if (sIndex < 0) {
            eIndex = sLink[~sIndex];
            sLink[~sIndex] = SK_MaxS32;
        } else {
            eIndex = eLink[sIndex];
            eLink[sIndex] = SK_MaxS32;
        }
        SkASSERT(eIndex != SK_MaxS32);
#if DEBUG_ASSEMBLE
        SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e',
                    sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e',
                    eIndex < 0 ? ~eIndex : eIndex);
#endif
        do {
            const SkOpContour* contour = runs[rIndex];
            if (first) {
                first = false;
                const SkPoint* startPtr = &contour->start();
                simple->deferredMove(startPtr[0]);
            }
            if (forward) {
                contour->toPartialForward(simple);
            } else {
                contour->toPartialBackward(simple);
            }
#if DEBUG_ASSEMBLE
            SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex,
                eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex,
                sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex));
#endif
            if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) {
                simple->close();
                break;
            }
            if (forward) {
                eIndex = eLink[rIndex];
                SkASSERT(eIndex != SK_MaxS32);
                eLink[rIndex] = SK_MaxS32;
                if (eIndex >= 0) {
                    SkASSERT(sLink[eIndex] == rIndex);
                    sLink[eIndex] = SK_MaxS32;
                } else {
                    SkASSERT(eLink[~eIndex] == ~rIndex);
                    eLink[~eIndex] = SK_MaxS32;
                }
            } else {
                eIndex = sLink[rIndex];
                SkASSERT(eIndex != SK_MaxS32);
                sLink[rIndex] = SK_MaxS32;
                if (eIndex >= 0) {
                    SkASSERT(eLink[eIndex] == rIndex);
                    eLink[eIndex] = SK_MaxS32;
                } else {
                    SkASSERT(sLink[~eIndex] == ~rIndex);
                    sLink[~eIndex] = SK_MaxS32;
                }
            }
            rIndex = eIndex;
            if (rIndex < 0) {
                forward ^= 1;
                rIndex = ~rIndex;
            }
        } while (true);
        for (rIndex = 0; rIndex < count; ++rIndex) {
            if (sLink[rIndex] != SK_MaxS32) {
                break;
            }
        }
    } while (rIndex < count);
#if DEBUG_ASSEMBLE
    for (rIndex = 0; rIndex < count; ++rIndex) {
       SkASSERT(sLink[rIndex] == SK_MaxS32);
       SkASSERT(eLink[rIndex] == SK_MaxS32);
    }
#endif
}

static void calcAngles(SkOpContourHead* contourList) {
    SkOpContour* contour = contourList;
    do {
        contour->calcAngles();
    } while ((contour = contour->next()));
}

static bool missingCoincidence(SkOpContourHead* contourList) {
    SkOpContour* contour = contourList;
    bool result = false;
    do {
        result |= contour->missingCoincidence();
    } while ((contour = contour->next()));
    return result;
}

static bool moveMultiples(SkOpContourHead* contourList) {
    SkOpContour* contour = contourList;
    do {
        if (!contour->moveMultiples()) {
            return false;
        }
    } while ((contour = contour->next()));
    return true;
}

static void moveNearby(SkOpContourHead* contourList) {
    SkOpContour* contour = contourList;
    do {
        contour->moveNearby();
    } while ((contour = contour->next()));
}

static void sortAngles(SkOpContourHead* contourList) {
    SkOpContour* contour = contourList;
    do {
        contour->sortAngles();
    } while ((contour = contour->next()));
}

bool HandleCoincidence(SkOpContourHead* contourList, SkOpCoincidence* coincidence) {
    SkOpGlobalState* globalState = contourList->globalState();
    DEBUG_COINCIDENCE_HEALTH(contourList, "start");
#if DEBUG_VALIDATE
    globalState->setPhase(SkOpGlobalState::kIntersecting);
#endif

    // match up points within the coincident runs
    if (!coincidence->addExpanded()) {
        return false;
    }
    DEBUG_COINCIDENCE_HEALTH(contourList, "addExpanded");
#if DEBUG_VALIDATE
    globalState->setPhase(SkOpGlobalState::kWalking);
#endif
    // combine t values when multiple intersections occur on some segments but not others
    if (!moveMultiples(contourList)) {
        return false;
    }
    DEBUG_COINCIDENCE_HEALTH(contourList, "moveMultiples");
    // move t values and points together to eliminate small/tiny gaps
    (void) moveNearby(contourList);
    DEBUG_COINCIDENCE_HEALTH(contourList, "moveNearby");
#if DEBUG_VALIDATE
    globalState->setPhase(SkOpGlobalState::kIntersecting);
#endif
    // add coincidence formed by pairing on curve points and endpoints
    coincidence->correctEnds();
    if (!coincidence->addEndMovedSpans()) {
        return false;
    }
    DEBUG_COINCIDENCE_HEALTH(contourList, "addEndMovedSpans");

    const int SAFETY_COUNT = 100;  // FIXME: tune
    int safetyHatch = SAFETY_COUNT;
    // look for coincidence present in A-B and A-C but missing in B-C
    while (coincidence->addMissing()) {
        if (!--safetyHatch) {
            SkASSERT(0);  // FIXME: take this out after verifying std tests don't trigger
            return false;
        }
        DEBUG_COINCIDENCE_HEALTH(contourList, "addMissing");
        moveNearby(contourList);
        DEBUG_COINCIDENCE_HEALTH(contourList, "moveNearby");
    }
    DEBUG_COINCIDENCE_HEALTH(contourList, "addMissing2");
    // FIXME: only call this if addMissing modified something when returning false
    moveNearby(contourList);
    DEBUG_COINCIDENCE_HEALTH(contourList, "moveNearby2");
    // check to see if, loosely, coincident ranges may be expanded
    if (coincidence->expand()) {
        DEBUG_COINCIDENCE_HEALTH(contourList, "expand1");
        coincidence->addMissing();
        DEBUG_COINCIDENCE_HEALTH(contourList, "addMissing2");
        if (!coincidence->addExpanded()) {
            return false;
        }
        DEBUG_COINCIDENCE_HEALTH(contourList, "addExpanded2");
        if (!moveMultiples(contourList)) {
            return false;
        }
        DEBUG_COINCIDENCE_HEALTH(contourList, "moveMultiples2");
        moveNearby(contourList);
    }
#if DEBUG_VALIDATE
    globalState->setPhase(SkOpGlobalState::kWalking);
#endif
    DEBUG_COINCIDENCE_HEALTH(contourList, "expand2");
    // the expanded ranges may not align -- add the missing spans
    if (!coincidence->addExpanded()) {
        SkASSERT(globalState->debugSkipAssert());
        return false;
    }
    DEBUG_COINCIDENCE_HEALTH(contourList, "addExpanded3");
    coincidence->correctEnds();
    if (!coincidence->mark()) {  // mark spans of coincident segments as coincident
        return false;
    }
    DEBUG_COINCIDENCE_HEALTH(contourList, "mark1");
    // look for coincidence lines and curves undetected by intersection
    if (missingCoincidence(contourList)) {
#if DEBUG_VALIDATE
        globalState->setPhase(SkOpGlobalState::kIntersecting);
#endif
        DEBUG_COINCIDENCE_HEALTH(contourList, "missingCoincidence1");
        (void) coincidence->expand();
        DEBUG_COINCIDENCE_HEALTH(contourList, "expand3");
        if (!coincidence->addExpanded()) {
            return false;
        }
#if DEBUG_VALIDATE
        globalState->setPhase(SkOpGlobalState::kWalking);
#endif
        DEBUG_COINCIDENCE_HEALTH(contourList, "addExpanded3");
        if (!coincidence->mark()) {
            return false;
        }
    } else {
        DEBUG_COINCIDENCE_HEALTH(contourList, "missingCoincidence2");
        (void) coincidence->expand();
    }
    DEBUG_COINCIDENCE_HEALTH(contourList, "missingCoincidence3");

    (void) coincidence->expand();

#if 0  // under development
    // coincident runs may cross two or more spans, but the opposite spans may be out of order
    if (!coincidence->reorder()) {
      return false;
    }
#endif
    DEBUG_COINCIDENCE_HEALTH(contourList, "coincidence.reorder");
    SkOpCoincidence overlaps(globalState);
    do {
        SkOpCoincidence* pairs = overlaps.isEmpty() ? coincidence : &overlaps;
        if (!pairs->apply()) {  // adjust the winding value to account for coincident edges
            return false;
        }
        DEBUG_COINCIDENCE_HEALTH(contourList, "pairs->apply");
        // For each coincident pair that overlaps another, when the receivers (the 1st of the pair)
        // are different, construct a new pair to resolve their mutual span
        if (!pairs->findOverlaps(&overlaps)) {
            return false;
        }
        DEBUG_COINCIDENCE_HEALTH(contourList, "pairs->findOverlaps");
    } while (!overlaps.isEmpty());
    calcAngles(contourList);
    sortAngles(contourList);
    if (globalState->angleCoincidence()) {
        (void) missingCoincidence(contourList);
        if (!coincidence->apply()) {
            return false;
        }
    }
#if DEBUG_COINCIDENCE_VERBOSE
    coincidence->debugShowCoincidence();
#endif
#if DEBUG_COINCIDENCE
    coincidence->debugValidate();
#endif
    SkPathOpsDebug::ShowActiveSpans(contourList);
    return true;
}