1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkAddIntersections.h"
#include "SkOpCoincidence.h"
#include "SkOpEdgeBuilder.h"
#include "SkPathOpsCommon.h"
#include "SkPathWriter.h"
#include "SkTSort.h"
static int contourRangeCheckY(const SkTDArray<SkOpContour* >& contourList,
SkOpSegment** currentPtr, SkOpSpanBase** startPtr, SkOpSpanBase** endPtr,
double* bestHit, SkScalar* bestDx, bool* tryAgain, double* midPtr, bool opp) {
SkOpSpanBase* start = *startPtr;
SkOpSpanBase* end = *endPtr;
const double mid = *midPtr;
const SkOpSegment* current = *currentPtr;
double tAtMid = SkOpSegment::TAtMid(start, end, mid);
SkPoint basePt = current->ptAtT(tAtMid);
int contourCount = contourList.count();
SkScalar bestY = SK_ScalarMin;
SkOpSegment* bestSeg = NULL;
SkOpSpan* bestTSpan = NULL;
bool bestOpp;
bool hitSomething = false;
for (int cTest = 0; cTest < contourCount; ++cTest) {
SkOpContour* contour = contourList[cTest];
bool testOpp = contour->operand() ^ current->operand() ^ opp;
if (basePt.fY < contour->bounds().fTop) {
continue;
}
if (bestY > contour->bounds().fBottom) {
continue;
}
SkOpSegment* testSeg = contour->first();
SkASSERT(testSeg);
do {
SkScalar testY = bestY;
double testHit;
bool vertical;
SkOpSpan* testTSpan = testSeg->crossedSpanY(basePt, tAtMid, testOpp,
testSeg == current, &testY, &testHit, &hitSomething, &vertical);
if (!testTSpan) {
if (vertical) {
hitSomething = true;
bestSeg = NULL;
goto abortContours; // vertical encountered, return and try different point
}
continue;
}
if (testSeg == current && SkOpSegment::BetweenTs(start, testHit, end)) {
double baseT = start->t();
double endT = end->t();
double newMid = (testHit - baseT) / (endT - baseT);
#if DEBUG_WINDING
double midT = SkOpSegment::TAtMid(start, end, mid);
SkPoint midXY = current->ptAtT(midT);
double newMidT = SkOpSegment::TAtMid(start, end, newMid);
SkPoint newXY = current->ptAtT(newMidT);
SkDebugf("%s [%d] mid=%1.9g->%1.9g s=%1.9g (%1.9g,%1.9g) m=%1.9g (%1.9g,%1.9g)"
" n=%1.9g (%1.9g,%1.9g) e=%1.9g (%1.9g,%1.9g)\n", __FUNCTION__,
current->debugID(), mid, newMid,
baseT, start->pt().fX, start->pt().fY,
baseT + mid * (endT - baseT), midXY.fX, midXY.fY,
baseT + newMid * (endT - baseT), newXY.fX, newXY.fY,
endT, end->pt().fX, end->pt().fY);
#endif
*midPtr = newMid * 2; // calling loop with divide by 2 before continuing
return SK_MinS32;
}
bestSeg = testSeg;
*bestHit = testHit;
bestOpp = testOpp;
bestTSpan = testTSpan;
bestY = testY;
} while ((testSeg = testSeg->next()));
}
abortContours:
int result;
if (!bestSeg) {
result = hitSomething ? SK_MinS32 : 0;
} else {
if (bestTSpan->windSum() == SK_MinS32) {
*currentPtr = bestSeg;
*startPtr = bestTSpan;
*endPtr = bestTSpan->next();
SkASSERT(*startPtr != *endPtr && *startPtr && *endPtr);
*tryAgain = true;
return 0;
}
result = bestSeg->windingAtT(*bestHit, bestTSpan, bestOpp, bestDx);
SkASSERT(result == SK_MinS32 || *bestDx);
}
double baseT = (*startPtr)->t();
double endT = (*endPtr)->t();
*bestHit = baseT + mid * (endT - baseT);
return result;
}
SkOpSegment* FindUndone(SkTDArray<SkOpContour* >& contourList, SkOpSpanBase** startPtr,
SkOpSpanBase** endPtr) {
int contourCount = contourList.count();
SkOpSegment* result;
for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
SkOpContour* contour = contourList[cIndex];
result = contour->undoneSegment(startPtr, endPtr);
if (result) {
return result;
}
}
return NULL;
}
SkOpSegment* FindChase(SkTDArray<SkOpSpanBase*>* chase, SkOpSpanBase** startPtr,
SkOpSpanBase** endPtr) {
while (chase->count()) {
SkOpSpanBase* span;
chase->pop(&span);
SkOpSegment* segment = span->segment();
*startPtr = span->ptT()->next()->span();
bool sortable = true;
bool done = true;
*endPtr = NULL;
if (SkOpAngle* last = segment->activeAngle(*startPtr, startPtr, endPtr, &done,
&sortable)) {
if (last->unorderable()) {
continue;
}
*startPtr = last->start();
*endPtr = last->end();
#if TRY_ROTATE
*chase->insert(0) = span;
#else
*chase->append() = span;
#endif
return last->segment();
}
if (done) {
continue;
}
if (!sortable) {
continue;
}
// find first angle, initialize winding to computed wind sum
const SkOpAngle* angle = segment->spanToAngle(*startPtr, *endPtr);
if (!angle) {
continue;
}
const SkOpAngle* firstAngle = angle;
bool loop = false;
int winding = SK_MinS32;
do {
angle = angle->next();
if (angle == firstAngle && loop) {
break; // if we get here, there's no winding, loop is unorderable
}
loop |= angle == firstAngle;
segment = angle->segment();
winding = segment->windSum(angle);
} while (winding == SK_MinS32);
if (winding == SK_MinS32) {
continue;
}
int sumWinding = segment->updateWindingReverse(angle);
SkOpSegment* first = NULL;
firstAngle = angle;
while ((angle = angle->next()) != firstAngle) {
segment = angle->segment();
SkOpSpanBase* start = angle->start();
SkOpSpanBase* end = angle->end();
int maxWinding;
segment->setUpWinding(start, end, &maxWinding, &sumWinding);
if (!segment->done(angle)) {
if (!first) {
first = segment;
*startPtr = start;
*endPtr = end;
}
// OPTIMIZATION: should this also add to the chase?
(void) segment->markAngle(maxWinding, sumWinding, angle);
}
}
if (first) {
#if TRY_ROTATE
*chase->insert(0) = span;
#else
*chase->append() = span;
#endif
return first;
}
}
return NULL;
}
#if DEBUG_ACTIVE_SPANS
void DebugShowActiveSpans(SkTDArray<SkOpContour* >& contourList) {
int index;
for (index = 0; index < contourList.count(); ++ index) {
contourList[index]->debugShowActiveSpans();
}
}
#endif
static SkOpSegment* findTopSegment(const SkTDArray<SkOpContour* >& contourList,
bool firstPass, SkOpSpanBase** start, SkOpSpanBase** end, SkPoint* topLeft,
bool* unsortable, bool* done, SkChunkAlloc* allocator) {
SkOpSegment* result;
const SkOpSegment* lastTopStart = NULL;
SkOpSpanBase* lastStart = NULL, * lastEnd = NULL;
do {
SkPoint bestXY = {SK_ScalarMax, SK_ScalarMax};
int contourCount = contourList.count();
SkOpSegment* topStart = NULL;
*done = true;
for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
SkOpContour* contour = contourList[cIndex];
if (contour->done()) {
continue;
}
const SkPathOpsBounds& bounds = contour->bounds();
if (bounds.fBottom < topLeft->fY) {
*done = false;
continue;
}
if (bounds.fBottom == topLeft->fY && bounds.fRight < topLeft->fX) {
*done = false;
continue;
}
contour->topSortableSegment(*topLeft, &bestXY, &topStart);
if (!contour->done()) {
*done = false;
}
}
if (!topStart) {
return NULL;
}
*topLeft = bestXY;
result = topStart->findTop(firstPass, start, end, unsortable, allocator);
if (!result) {
if (lastTopStart == topStart && lastStart == *start && lastEnd == *end) {
*done = true;
return NULL;
}
lastTopStart = topStart;
lastStart = *start;
lastEnd = *end;
}
} while (!result);
return result;
}
static int rightAngleWinding(const SkTDArray<SkOpContour* >& contourList,
SkOpSegment** currentPtr, SkOpSpanBase** start, SkOpSpanBase** end, double* tHit,
SkScalar* hitDx, bool* tryAgain, bool* onlyVertical, bool opp) {
double test = 0.9;
int contourWinding;
do {
contourWinding = contourRangeCheckY(contourList, currentPtr, start, end,
tHit, hitDx, tryAgain, &test, opp);
if (contourWinding != SK_MinS32 || *tryAgain) {
return contourWinding;
}
if (*currentPtr && (*currentPtr)->isVertical()) {
*onlyVertical = true;
return contourWinding;
}
test /= 2;
} while (!approximately_negative(test));
SkASSERT(0); // FIXME: incomplete functionality
return contourWinding;
}
static void skipVertical(const SkTDArray<SkOpContour* >& contourList,
SkOpSegment** current, SkOpSpanBase** start, SkOpSpanBase** end) {
if (!(*current)->isVertical(*start, *end)) {
return;
}
int contourCount = contourList.count();
for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
SkOpContour* contour = contourList[cIndex];
if (contour->done()) {
continue;
}
SkOpSegment* nonVertical = contour->nonVerticalSegment(start, end);
if (nonVertical) {
*current = nonVertical;
return;
}
}
return;
}
struct SortableTop2 { // error if local in pre-C++11
SkOpSpanBase* fStart;
SkOpSpanBase* fEnd;
};
SkOpSegment* FindSortableTop(const SkTDArray<SkOpContour* >& contourList, bool firstPass,
SkOpAngle::IncludeType angleIncludeType, bool* firstContour, SkOpSpanBase** startPtr,
SkOpSpanBase** endPtr, SkPoint* topLeft, bool* unsortable, bool* done, bool* onlyVertical,
SkChunkAlloc* allocator) {
SkOpSegment* current = findTopSegment(contourList, firstPass, startPtr, endPtr, topLeft,
unsortable, done, allocator);
if (!current) {
return NULL;
}
SkOpSpanBase* start = *startPtr;
SkOpSpanBase* end = *endPtr;
SkASSERT(current == start->segment());
if (*firstContour) {
current->initWinding(start, end, angleIncludeType);
*firstContour = false;
return current;
}
SkOpSpan* minSpan = start->starter(end);
int sumWinding = minSpan->windSum();
if (sumWinding == SK_MinS32) {
SkOpSpanBase* iSpan = end;
SkOpSpanBase* oSpan = start;
do {
bool checkFrom = oSpan->t() < iSpan->t();
if ((checkFrom ? iSpan->fromAngle() : iSpan->upCast()->toAngle()) == NULL) {
if (!iSpan->addSimpleAngle(checkFrom, allocator)) {
*unsortable = true;
return NULL;
}
}
sumWinding = current->computeSum(oSpan, iSpan, angleIncludeType);
SkTSwap(iSpan, oSpan);
} while (sumWinding == SK_MinS32 && iSpan == start);
}
if (sumWinding != SK_MinS32 && sumWinding != SK_NaN32) {
return current;
}
int contourWinding;
int oppContourWinding = 0;
// the simple upward projection of the unresolved points hit unsortable angles
// shoot rays at right angles to the segment to find its winding, ignoring angle cases
bool tryAgain;
double tHit;
SkScalar hitDx = 0;
SkScalar hitOppDx = 0;
// keep track of subsequent returns to detect infinite loops
SkTDArray<SortableTop2> sortableTops;
do {
// if current is vertical, find another candidate which is not
// if only remaining candidates are vertical, then they can be marked done
SkASSERT(*startPtr != *endPtr && *startPtr && *endPtr);
SkASSERT(current == (*startPtr)->segment());
skipVertical(contourList, ¤t, startPtr, endPtr);
SkASSERT(current); // FIXME: if null, all remaining are vertical
SkASSERT(*startPtr != *endPtr && *startPtr && *endPtr);
SkASSERT(current == (*startPtr)->segment());
tryAgain = false;
contourWinding = rightAngleWinding(contourList, ¤t, startPtr, endPtr, &tHit,
&hitDx, &tryAgain, onlyVertical, false);
SkASSERT(current == (*startPtr)->segment());
if (tryAgain) {
bool giveUp = false;
int count = sortableTops.count();
for (int index = 0; index < count; ++index) {
const SortableTop2& prev = sortableTops[index];
if (giveUp) {
prev.fStart->segment()->markDone(prev.fStart->starter(prev.fEnd));
} else if (prev.fStart == *startPtr || prev.fEnd == *endPtr) {
// remaining edges are non-vertical and cannot have their winding computed
// mark them as done and return, and hope that assembly can fill the holes
giveUp = true;
index = -1;
}
}
if (giveUp) {
*done = true;
return NULL;
}
}
SortableTop2* sortableTop = sortableTops.append();
sortableTop->fStart = *startPtr;
sortableTop->fEnd = *endPtr;
#if DEBUG_SORT
SkDebugf("%s current=%d index=%d endIndex=%d tHit=%1.9g hitDx=%1.9g try=%d vert=%d\n",
__FUNCTION__, current->debugID(), (*startPtr)->debugID(), (*endPtr)->debugID(),
tHit, hitDx, tryAgain, *onlyVertical);
#endif
if (*onlyVertical) {
return current;
}
if (tryAgain) {
continue;
}
if (angleIncludeType < SkOpAngle::kBinarySingle) {
break;
}
oppContourWinding = rightAngleWinding(contourList, ¤t, startPtr, endPtr, &tHit,
&hitOppDx, &tryAgain, NULL, true);
SkASSERT(current == (*startPtr)->segment());
} while (tryAgain);
bool success = current->initWinding(*startPtr, *endPtr, tHit, contourWinding, hitDx,
oppContourWinding, hitOppDx);
if (current->done()) {
return NULL;
} else if (!success) { // check if the span has a valid winding
SkOpSpan* minSpan = (*startPtr)->t() < (*endPtr)->t() ? (*startPtr)->upCast()
: (*endPtr)->upCast();
if (minSpan->windSum() == SK_MinS32) {
return NULL;
}
}
return current;
}
void MakeContourList(SkOpContour* contour, SkTDArray<SkOpContour* >& list,
bool evenOdd, bool oppEvenOdd) {
do {
if (contour->count()) {
contour->setOppXor(contour->operand() ? evenOdd : oppEvenOdd);
*list.append() = contour;
}
} while ((contour = contour->next()));
if (list.count() < 2) {
return;
}
SkTQSort<SkOpContour>(list.begin(), list.end() - 1);
}
class DistanceLessThan {
public:
DistanceLessThan(double* distances) : fDistances(distances) { }
double* fDistances;
bool operator()(const int one, const int two) {
return fDistances[one] < fDistances[two];
}
};
/*
check start and end of each contour
if not the same, record them
match them up
connect closest
reassemble contour pieces into new path
*/
void Assemble(const SkPathWriter& path, SkPathWriter* simple) {
SkChunkAlloc allocator(4096); // FIXME: constant-ize, tune
SkOpContour contour;
SkOpGlobalState globalState(NULL SkDEBUGPARAMS(&contour));
#if DEBUG_PATH_CONSTRUCTION
SkDebugf("%s\n", __FUNCTION__);
#endif
SkOpEdgeBuilder builder(path, &contour, &allocator, &globalState);
builder.finish(&allocator);
SkTDArray<const SkOpContour* > runs; // indices of partial contours
const SkOpContour* eContour = builder.head();
do {
if (!eContour->count()) {
continue;
}
const SkPoint& eStart = eContour->start();
const SkPoint& eEnd = eContour->end();
#if DEBUG_ASSEMBLE
SkDebugf("%s contour", __FUNCTION__);
if (!SkDPoint::ApproximatelyEqual(eStart, eEnd)) {
SkDebugf("[%d]", runs.count());
} else {
SkDebugf(" ");
}
SkDebugf(" start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n",
eStart.fX, eStart.fY, eEnd.fX, eEnd.fY);
#endif
if (SkDPoint::ApproximatelyEqual(eStart, eEnd)) {
eContour->toPath(simple);
continue;
}
*runs.append() = eContour;
} while ((eContour = eContour->next()));
int count = runs.count();
if (count == 0) {
return;
}
SkTDArray<int> sLink, eLink;
sLink.append(count);
eLink.append(count);
int rIndex, iIndex;
for (rIndex = 0; rIndex < count; ++rIndex) {
sLink[rIndex] = eLink[rIndex] = SK_MaxS32;
}
const int ends = count * 2; // all starts and ends
const int entries = (ends - 1) * count; // folded triangle : n * (n - 1) / 2
SkTDArray<double> distances;
distances.append(entries);
for (rIndex = 0; rIndex < ends - 1; ++rIndex) {
const SkOpContour* oContour = runs[rIndex >> 1];
const SkPoint& oPt = rIndex & 1 ? oContour->end() : oContour->start();
const int row = rIndex < count - 1 ? rIndex * ends : (ends - rIndex - 2)
* ends - rIndex - 1;
for (iIndex = rIndex + 1; iIndex < ends; ++iIndex) {
const SkOpContour* iContour = runs[iIndex >> 1];
const SkPoint& iPt = iIndex & 1 ? iContour->end() : iContour->start();
double dx = iPt.fX - oPt.fX;
double dy = iPt.fY - oPt.fY;
double dist = dx * dx + dy * dy;
distances[row + iIndex] = dist; // oStart distance from iStart
}
}
SkTDArray<int> sortedDist;
sortedDist.append(entries);
for (rIndex = 0; rIndex < entries; ++rIndex) {
sortedDist[rIndex] = rIndex;
}
SkTQSort<int>(sortedDist.begin(), sortedDist.end() - 1, DistanceLessThan(distances.begin()));
int remaining = count; // number of start/end pairs
for (rIndex = 0; rIndex < entries; ++rIndex) {
int pair = sortedDist[rIndex];
int row = pair / ends;
int col = pair - row * ends;
int thingOne = row < col ? row : ends - row - 2;
int ndxOne = thingOne >> 1;
bool endOne = thingOne & 1;
int* linkOne = endOne ? eLink.begin() : sLink.begin();
if (linkOne[ndxOne] != SK_MaxS32) {
continue;
}
int thingTwo = row < col ? col : ends - row + col - 1;
int ndxTwo = thingTwo >> 1;
bool endTwo = thingTwo & 1;
int* linkTwo = endTwo ? eLink.begin() : sLink.begin();
if (linkTwo[ndxTwo] != SK_MaxS32) {
continue;
}
SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]);
bool flip = endOne == endTwo;
linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo;
linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne;
if (!--remaining) {
break;
}
}
SkASSERT(!remaining);
#if DEBUG_ASSEMBLE
for (rIndex = 0; rIndex < count; ++rIndex) {
int s = sLink[rIndex];
int e = eLink[rIndex];
SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e',
s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e);
}
#endif
rIndex = 0;
do {
bool forward = true;
bool first = true;
int sIndex = sLink[rIndex];
SkASSERT(sIndex != SK_MaxS32);
sLink[rIndex] = SK_MaxS32;
int eIndex;
if (sIndex < 0) {
eIndex = sLink[~sIndex];
sLink[~sIndex] = SK_MaxS32;
} else {
eIndex = eLink[sIndex];
eLink[sIndex] = SK_MaxS32;
}
SkASSERT(eIndex != SK_MaxS32);
#if DEBUG_ASSEMBLE
SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e',
sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e',
eIndex < 0 ? ~eIndex : eIndex);
#endif
do {
const SkOpContour* contour = runs[rIndex];
if (first) {
first = false;
const SkPoint* startPtr = &contour->start();
simple->deferredMove(startPtr[0]);
}
if (forward) {
contour->toPartialForward(simple);
} else {
contour->toPartialBackward(simple);
}
#if DEBUG_ASSEMBLE
SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex,
eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex,
sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex));
#endif
if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) {
simple->close();
break;
}
if (forward) {
eIndex = eLink[rIndex];
SkASSERT(eIndex != SK_MaxS32);
eLink[rIndex] = SK_MaxS32;
if (eIndex >= 0) {
SkASSERT(sLink[eIndex] == rIndex);
sLink[eIndex] = SK_MaxS32;
} else {
SkASSERT(eLink[~eIndex] == ~rIndex);
eLink[~eIndex] = SK_MaxS32;
}
} else {
eIndex = sLink[rIndex];
SkASSERT(eIndex != SK_MaxS32);
sLink[rIndex] = SK_MaxS32;
if (eIndex >= 0) {
SkASSERT(eLink[eIndex] == rIndex);
eLink[eIndex] = SK_MaxS32;
} else {
SkASSERT(sLink[~eIndex] == ~rIndex);
sLink[~eIndex] = SK_MaxS32;
}
}
rIndex = eIndex;
if (rIndex < 0) {
forward ^= 1;
rIndex = ~rIndex;
}
} while (true);
for (rIndex = 0; rIndex < count; ++rIndex) {
if (sLink[rIndex] != SK_MaxS32) {
break;
}
}
} while (rIndex < count);
#if DEBUG_ASSEMBLE
for (rIndex = 0; rIndex < count; ++rIndex) {
SkASSERT(sLink[rIndex] == SK_MaxS32);
SkASSERT(eLink[rIndex] == SK_MaxS32);
}
#endif
}
static void align(SkTDArray<SkOpContour* >* contourList) {
int contourCount = (*contourList).count();
for (int cTest = 0; cTest < contourCount; ++cTest) {
SkOpContour* contour = (*contourList)[cTest];
contour->align();
}
}
static void calcAngles(SkTDArray<SkOpContour* >* contourList, SkChunkAlloc* allocator) {
int contourCount = (*contourList).count();
for (int cTest = 0; cTest < contourCount; ++cTest) {
SkOpContour* contour = (*contourList)[cTest];
contour->calcAngles(allocator);
}
}
static void missingCoincidence(SkTDArray<SkOpContour* >* contourList,
SkOpCoincidence* coincidence, SkChunkAlloc* allocator) {
int contourCount = (*contourList).count();
for (int cTest = 0; cTest < contourCount; ++cTest) {
SkOpContour* contour = (*contourList)[cTest];
contour->missingCoincidence(coincidence, allocator);
}
}
static bool moveNearby(SkTDArray<SkOpContour* >* contourList) {
int contourCount = (*contourList).count();
for (int cTest = 0; cTest < contourCount; ++cTest) {
SkOpContour* contour = (*contourList)[cTest];
if (!contour->moveNearby()) {
return false;
}
}
return true;
}
static void sortAngles(SkTDArray<SkOpContour* >* contourList) {
int contourCount = (*contourList).count();
for (int cTest = 0; cTest < contourCount; ++cTest) {
SkOpContour* contour = (*contourList)[cTest];
contour->sortAngles();
}
}
static void sortSegments(SkTDArray<SkOpContour* >* contourList) {
int contourCount = (*contourList).count();
for (int cTest = 0; cTest < contourCount; ++cTest) {
SkOpContour* contour = (*contourList)[cTest];
contour->sortSegments();
}
}
bool HandleCoincidence(SkTDArray<SkOpContour* >* contourList, SkOpCoincidence* coincidence,
SkChunkAlloc* allocator, SkOpGlobalState* globalState) {
// move t values and points together to eliminate small/tiny gaps
if (!moveNearby(contourList)) {
return false;
}
align(contourList); // give all span members common values
#if DEBUG_VALIDATE
globalState->setPhase(SkOpGlobalState::kIntersecting);
#endif
coincidence->addMissing(allocator);
#if DEBUG_VALIDATE
globalState->setPhase(SkOpGlobalState::kWalking);
#endif
coincidence->expand(); // check to see if, loosely, coincident ranges may be expanded
coincidence->mark(); // mark spans of coincident segments as coincident
missingCoincidence(contourList, coincidence, allocator); // look for coincidence missed earlier
if (!coincidence->apply()) { // adjust the winding value to account for coincident edges
return false;
}
sortSegments(contourList);
calcAngles(contourList, allocator);
sortAngles(contourList);
if (globalState->angleCoincidence()) {
missingCoincidence(contourList, coincidence, allocator);
if (!coincidence->apply()) {
return false;
}
}
#if DEBUG_ACTIVE_SPANS
DebugShowActiveSpans(*contourList);
#endif
return true;
}
|