1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkAddIntersections.h"
#include "SkOpCoincidence.h"
#include "SkOpEdgeBuilder.h"
#include "SkPathOpsCommon.h"
#include "SkPathWriter.h"
#include "SkTSort.h"
const SkOpAngle* AngleWinding(SkOpSpanBase* start, SkOpSpanBase* end, int* windingPtr,
bool* sortablePtr) {
// find first angle, initialize winding to computed fWindSum
SkOpSegment* segment = start->segment();
const SkOpAngle* angle = segment->spanToAngle(start, end);
if (!angle) {
*windingPtr = SK_MinS32;
return nullptr;
}
bool computeWinding = false;
const SkOpAngle* firstAngle = angle;
bool loop = false;
bool unorderable = false;
int winding = SK_MinS32;
do {
angle = angle->next();
unorderable |= angle->unorderable();
if ((computeWinding = unorderable || (angle == firstAngle && loop))) {
break; // if we get here, there's no winding, loop is unorderable
}
loop |= angle == firstAngle;
segment = angle->segment();
winding = segment->windSum(angle);
} while (winding == SK_MinS32);
// if the angle loop contains an unorderable span, the angle order may be useless
// directly compute the winding in this case for each span
if (computeWinding) {
firstAngle = angle;
winding = SK_MinS32;
do {
SkOpSpanBase* startSpan = angle->start();
SkOpSpanBase* endSpan = angle->end();
SkOpSpan* lesser = startSpan->starter(endSpan);
int testWinding = lesser->windSum();
if (testWinding == SK_MinS32) {
testWinding = lesser->computeWindSum();
}
if (testWinding != SK_MinS32) {
segment = angle->segment();
winding = testWinding;
}
angle = angle->next();
} while (angle != firstAngle);
}
*sortablePtr = !unorderable;
*windingPtr = winding;
return angle;
}
SkOpSegment* FindUndone(SkOpContourHead* contourList, SkOpSpanBase** startPtr,
SkOpSpanBase** endPtr) {
SkOpSegment* result;
SkOpContour* contour = contourList;
do {
result = contour->undoneSegment(startPtr, endPtr);
if (result) {
return result;
}
} while ((contour = contour->next()));
return nullptr;
}
SkOpSegment* FindChase(SkTDArray<SkOpSpanBase*>* chase, SkOpSpanBase** startPtr,
SkOpSpanBase** endPtr) {
while (chase->count()) {
SkOpSpanBase* span;
chase->pop(&span);
SkOpSegment* segment = span->segment();
*startPtr = span->ptT()->next()->span();
bool done = true;
*endPtr = nullptr;
if (SkOpAngle* last = segment->activeAngle(*startPtr, startPtr, endPtr, &done)) {
*startPtr = last->start();
*endPtr = last->end();
#if TRY_ROTATE
*chase->insert(0) = span;
#else
*chase->append() = span;
#endif
return last->segment();
}
if (done) {
continue;
}
// find first angle, initialize winding to computed wind sum
int winding;
bool sortable;
const SkOpAngle* angle = AngleWinding(*startPtr, *endPtr, &winding, &sortable);
if (winding == SK_MinS32) {
continue;
}
int sumWinding SK_INIT_TO_AVOID_WARNING;
if (sortable) {
segment = angle->segment();
sumWinding = segment->updateWindingReverse(angle);
}
SkOpSegment* first = nullptr;
const SkOpAngle* firstAngle = angle;
while ((angle = angle->next()) != firstAngle) {
segment = angle->segment();
SkOpSpanBase* start = angle->start();
SkOpSpanBase* end = angle->end();
int maxWinding;
if (sortable) {
segment->setUpWinding(start, end, &maxWinding, &sumWinding);
}
if (!segment->done(angle)) {
if (!first && (sortable || start->starter(end)->windSum() != SK_MinS32)) {
first = segment;
*startPtr = start;
*endPtr = end;
}
// OPTIMIZATION: should this also add to the chase?
if (sortable) {
(void) segment->markAngle(maxWinding, sumWinding, angle);
}
}
}
if (first) {
#if TRY_ROTATE
*chase->insert(0) = span;
#else
*chase->append() = span;
#endif
return first;
}
}
return nullptr;
}
#if DEBUG_ACTIVE_SPANS
void DebugShowActiveSpans(SkOpContourHead* contourList) {
SkOpContour* contour = contourList;
do {
contour->debugShowActiveSpans();
} while ((contour = contour->next()));
}
#endif
bool SortContourList(SkOpContourHead** contourList, bool evenOdd, bool oppEvenOdd) {
SkTDArray<SkOpContour* > list;
SkOpContour* contour = *contourList;
do {
if (contour->count()) {
contour->setOppXor(contour->operand() ? evenOdd : oppEvenOdd);
*list.append() = contour;
}
} while ((contour = contour->next()));
int count = list.count();
if (!count) {
return false;
}
if (count > 1) {
SkTQSort<SkOpContour>(list.begin(), list.end() - 1);
}
contour = list[0];
SkOpContourHead* contourHead = static_cast<SkOpContourHead*>(contour);
contour->globalState()->setContourHead(contourHead);
*contourList = contourHead;
for (int index = 1; index < count; ++index) {
SkOpContour* next = list[index];
contour->setNext(next);
contour = next;
}
contour->setNext(nullptr);
return true;
}
class DistanceLessThan {
public:
DistanceLessThan(double* distances) : fDistances(distances) { }
double* fDistances;
bool operator()(const int one, const int two) {
return fDistances[one] < fDistances[two];
}
};
/*
check start and end of each contour
if not the same, record them
match them up
connect closest
reassemble contour pieces into new path
*/
void Assemble(const SkPathWriter& path, SkPathWriter* simple) {
SkChunkAlloc allocator(4096); // FIXME: constant-ize, tune
SkOpContourHead contour;
SkOpGlobalState globalState(nullptr, &contour SkDEBUGPARAMS(nullptr));
#if DEBUG_SHOW_TEST_NAME
SkDebugf("</div>\n");
#endif
#if DEBUG_PATH_CONSTRUCTION
SkDebugf("%s\n", __FUNCTION__);
#endif
SkOpEdgeBuilder builder(path, &contour, &allocator, &globalState);
builder.finish(&allocator);
SkTDArray<const SkOpContour* > runs; // indices of partial contours
const SkOpContour* eContour = builder.head();
do {
if (!eContour->count()) {
continue;
}
const SkPoint& eStart = eContour->start();
const SkPoint& eEnd = eContour->end();
#if DEBUG_ASSEMBLE
SkDebugf("%s contour", __FUNCTION__);
if (!SkDPoint::ApproximatelyEqual(eStart, eEnd)) {
SkDebugf("[%d]", runs.count());
} else {
SkDebugf(" ");
}
SkDebugf(" start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n",
eStart.fX, eStart.fY, eEnd.fX, eEnd.fY);
#endif
if (SkDPoint::ApproximatelyEqual(eStart, eEnd)) {
eContour->toPath(simple);
continue;
}
*runs.append() = eContour;
} while ((eContour = eContour->next()));
int count = runs.count();
if (count == 0) {
return;
}
SkTDArray<int> sLink, eLink;
sLink.append(count);
eLink.append(count);
int rIndex, iIndex;
for (rIndex = 0; rIndex < count; ++rIndex) {
sLink[rIndex] = eLink[rIndex] = SK_MaxS32;
}
const int ends = count * 2; // all starts and ends
const int entries = (ends - 1) * count; // folded triangle : n * (n - 1) / 2
SkTDArray<double> distances;
distances.append(entries);
for (rIndex = 0; rIndex < ends - 1; ++rIndex) {
const SkOpContour* oContour = runs[rIndex >> 1];
const SkPoint& oPt = rIndex & 1 ? oContour->end() : oContour->start();
const int row = rIndex < count - 1 ? rIndex * ends : (ends - rIndex - 2)
* ends - rIndex - 1;
for (iIndex = rIndex + 1; iIndex < ends; ++iIndex) {
const SkOpContour* iContour = runs[iIndex >> 1];
const SkPoint& iPt = iIndex & 1 ? iContour->end() : iContour->start();
double dx = iPt.fX - oPt.fX;
double dy = iPt.fY - oPt.fY;
double dist = dx * dx + dy * dy;
distances[row + iIndex] = dist; // oStart distance from iStart
}
}
SkTDArray<int> sortedDist;
sortedDist.append(entries);
for (rIndex = 0; rIndex < entries; ++rIndex) {
sortedDist[rIndex] = rIndex;
}
SkTQSort<int>(sortedDist.begin(), sortedDist.end() - 1, DistanceLessThan(distances.begin()));
int remaining = count; // number of start/end pairs
for (rIndex = 0; rIndex < entries; ++rIndex) {
int pair = sortedDist[rIndex];
int row = pair / ends;
int col = pair - row * ends;
int thingOne = row < col ? row : ends - row - 2;
int ndxOne = thingOne >> 1;
bool endOne = thingOne & 1;
int* linkOne = endOne ? eLink.begin() : sLink.begin();
if (linkOne[ndxOne] != SK_MaxS32) {
continue;
}
int thingTwo = row < col ? col : ends - row + col - 1;
int ndxTwo = thingTwo >> 1;
bool endTwo = thingTwo & 1;
int* linkTwo = endTwo ? eLink.begin() : sLink.begin();
if (linkTwo[ndxTwo] != SK_MaxS32) {
continue;
}
SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]);
bool flip = endOne == endTwo;
linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo;
linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne;
if (!--remaining) {
break;
}
}
SkASSERT(!remaining);
#if DEBUG_ASSEMBLE
for (rIndex = 0; rIndex < count; ++rIndex) {
int s = sLink[rIndex];
int e = eLink[rIndex];
SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e',
s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e);
}
#endif
rIndex = 0;
do {
bool forward = true;
bool first = true;
int sIndex = sLink[rIndex];
SkASSERT(sIndex != SK_MaxS32);
sLink[rIndex] = SK_MaxS32;
int eIndex;
if (sIndex < 0) {
eIndex = sLink[~sIndex];
sLink[~sIndex] = SK_MaxS32;
} else {
eIndex = eLink[sIndex];
eLink[sIndex] = SK_MaxS32;
}
SkASSERT(eIndex != SK_MaxS32);
#if DEBUG_ASSEMBLE
SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e',
sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e',
eIndex < 0 ? ~eIndex : eIndex);
#endif
do {
const SkOpContour* contour = runs[rIndex];
if (first) {
first = false;
const SkPoint* startPtr = &contour->start();
simple->deferredMove(startPtr[0]);
}
if (forward) {
contour->toPartialForward(simple);
} else {
contour->toPartialBackward(simple);
}
#if DEBUG_ASSEMBLE
SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex,
eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex,
sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex));
#endif
if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) {
simple->close();
break;
}
if (forward) {
eIndex = eLink[rIndex];
SkASSERT(eIndex != SK_MaxS32);
eLink[rIndex] = SK_MaxS32;
if (eIndex >= 0) {
SkASSERT(sLink[eIndex] == rIndex);
sLink[eIndex] = SK_MaxS32;
} else {
SkASSERT(eLink[~eIndex] == ~rIndex);
eLink[~eIndex] = SK_MaxS32;
}
} else {
eIndex = sLink[rIndex];
SkASSERT(eIndex != SK_MaxS32);
sLink[rIndex] = SK_MaxS32;
if (eIndex >= 0) {
SkASSERT(eLink[eIndex] == rIndex);
eLink[eIndex] = SK_MaxS32;
} else {
SkASSERT(sLink[~eIndex] == ~rIndex);
sLink[~eIndex] = SK_MaxS32;
}
}
rIndex = eIndex;
if (rIndex < 0) {
forward ^= 1;
rIndex = ~rIndex;
}
} while (true);
for (rIndex = 0; rIndex < count; ++rIndex) {
if (sLink[rIndex] != SK_MaxS32) {
break;
}
}
} while (rIndex < count);
#if DEBUG_ASSEMBLE
for (rIndex = 0; rIndex < count; ++rIndex) {
SkASSERT(sLink[rIndex] == SK_MaxS32);
SkASSERT(eLink[rIndex] == SK_MaxS32);
}
#endif
}
static void align(SkOpContourHead* contourList) {
SkOpContour* contour = contourList;
do {
contour->align();
} while ((contour = contour->next()));
}
static void addAlignIntersections(SkOpContourHead* contourList, SkChunkAlloc* allocator) {
SkOpContour* contour = contourList;
do {
contour->addAlignIntersections(contourList, allocator);
} while ((contour = contour->next()));
}
static void calcAngles(SkOpContourHead* contourList, SkChunkAlloc* allocator) {
SkOpContour* contour = contourList;
do {
contour->calcAngles(allocator);
} while ((contour = contour->next()));
}
static void findCollapsed(SkOpContourHead* contourList) {
SkOpContour* contour = contourList;
do {
contour->findCollapsed();
} while ((contour = contour->next()));
}
static bool missingCoincidence(SkOpContourHead* contourList,
SkOpCoincidence* coincidence, SkChunkAlloc* allocator) {
SkOpContour* contour = contourList;
bool result = false;
do {
result |= contour->missingCoincidence(coincidence, allocator);
} while ((contour = contour->next()));
return result;
}
static void moveMultiples(SkOpContourHead* contourList) {
SkOpContour* contour = contourList;
do {
contour->moveMultiples();
} while ((contour = contour->next()));
}
static void moveNearby(SkOpContourHead* contourList) {
SkOpContour* contour = contourList;
do {
contour->moveNearby();
} while ((contour = contour->next()));
}
static void sortAngles(SkOpContourHead* contourList) {
SkOpContour* contour = contourList;
do {
contour->sortAngles();
} while ((contour = contour->next()));
}
bool HandleCoincidence(SkOpContourHead* contourList, SkOpCoincidence* coincidence,
SkChunkAlloc* allocator) {
SkOpGlobalState* globalState = contourList->globalState();
// combine t values when multiple intersections occur on some segments but not others
moveMultiples(contourList);
findCollapsed(contourList);
// move t values and points together to eliminate small/tiny gaps
moveNearby(contourList);
align(contourList); // give all span members common values
coincidence->fixAligned(); // aligning may have marked a coincidence pt-t deleted
#if DEBUG_VALIDATE
globalState->setPhase(SkOpGlobalState::kIntersecting);
#endif
// look for intersections on line segments formed by moving end points
addAlignIntersections(contourList, allocator);
coincidence->addMissing(allocator);
#if DEBUG_VALIDATE
globalState->setPhase(SkOpGlobalState::kWalking);
#endif
// check to see if, loosely, coincident ranges may be expanded
if (coincidence->expand()) {
coincidence->addExpanded(allocator PATH_OPS_DEBUG_VALIDATE_PARAMS(globalState));
}
// the expanded ranges may not align -- add the missing spans
coincidence->mark(); // mark spans of coincident segments as coincident
// look for coincidence missed earlier
if (missingCoincidence(contourList, coincidence, allocator)) {
(void) coincidence->expand();
coincidence->addExpanded(allocator PATH_OPS_DEBUG_VALIDATE_PARAMS(globalState));
coincidence->mark();
}
SkOpCoincidence overlaps;
do {
SkOpCoincidence* pairs = overlaps.isEmpty() ? coincidence : &overlaps;
if (!pairs->apply()) { // adjust the winding value to account for coincident edges
return false;
}
// For each coincident pair that overlaps another, when the receivers (the 1st of the pair)
// are different, construct a new pair to resolve their mutual span
pairs->findOverlaps(&overlaps, allocator);
} while (!overlaps.isEmpty());
calcAngles(contourList, allocator);
sortAngles(contourList);
if (globalState->angleCoincidence()) {
(void) missingCoincidence(contourList, coincidence, allocator);
if (!coincidence->apply()) {
return false;
}
}
#if DEBUG_ACTIVE_SPANS
coincidence->debugShowCoincidence();
DebugShowActiveSpans(contourList);
#endif
return true;
}
|