1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkOpSpan_DEFINED
#define SkOpSpan_DEFINED
#include "SkPathOpsDebug.h"
#include "SkPathOpsTypes.h"
#include "SkPoint.h"
class SkChunkAlloc;
struct SkOpAngle;
class SkOpContour;
class SkOpGlobalState;
class SkOpSegment;
class SkOpSpanBase;
class SkOpSpan;
// subset of op span used by terminal span (when t is equal to one)
class SkOpPtT {
public:
enum {
kIsAlias = 1,
kIsDuplicate = 1
};
void addOpp(SkOpPtT* opp) {
// find the fOpp ptr to opp
SkOpPtT* oppPrev = opp->fNext;
if (oppPrev == this) {
return;
}
while (oppPrev->fNext != opp) {
oppPrev = oppPrev->fNext;
if (oppPrev == this) {
return;
}
}
SkOpPtT* oldNext = this->fNext;
SkASSERT(this != opp);
this->fNext = opp;
SkASSERT(oppPrev != oldNext);
oppPrev->fNext = oldNext;
}
bool alias() const;
bool collapsed(const SkOpPtT* ) const;
bool contains(const SkOpPtT* ) const;
SkOpPtT* contains(const SkOpSegment* );
SkOpContour* contour() const;
int debugID() const {
return SkDEBUGRELEASE(fID, -1);
}
const SkOpAngle* debugAngle(int id) const;
SkOpContour* debugContour(int id);
int debugLoopLimit(bool report) const;
bool debugMatchID(int id) const;
const SkOpPtT* debugPtT(int id) const;
const SkOpSegment* debugSegment(int id) const;
const SkOpSpanBase* debugSpan(int id) const;
SkOpGlobalState* globalState() const;
void debugValidate() const;
bool deleted() const {
return fDeleted;
}
SkOpPtT* doppelganger();
bool duplicate() const {
return fDuplicatePt;
}
void dump() const; // available to testing only
void dumpAll() const;
void dumpBase() const;
SkOpPtT* find(SkOpSegment* );
void init(SkOpSpanBase* , double t, const SkPoint& , bool dup);
void insert(SkOpPtT* span) {
SkASSERT(span != this);
span->fNext = fNext;
fNext = span;
}
const SkOpPtT* next() const {
return fNext;
}
SkOpPtT* next() {
return fNext;
}
bool onEnd() const;
static bool Overlaps(SkOpPtT* s1, SkOpPtT* e1, SkOpPtT* s2, SkOpPtT* e2,
SkOpPtT** sOut, SkOpPtT** eOut) {
SkOpPtT* start1 = s1->fT < e1->fT ? s1 : e1;
SkOpPtT* start2 = s2->fT < e2->fT ? s2 : e2;
*sOut = between(s1->fT, start2->fT, e1->fT) ? start2
: between(s2->fT, start1->fT, e2->fT) ? start1 : nullptr;
SkOpPtT* end1 = s1->fT < e1->fT ? e1 : s1;
SkOpPtT* end2 = s2->fT < e2->fT ? e2 : s2;
*eOut = between(s1->fT, end2->fT, e1->fT) ? end2
: between(s2->fT, end1->fT, e2->fT) ? end1 : nullptr;
if (*sOut == *eOut) {
SkASSERT(start1->fT >= end2->fT || start2->fT >= end1->fT);
return false;
}
SkASSERT(!*sOut || *sOut != *eOut);
return *sOut && *eOut;
}
SkOpPtT* prev();
SkOpPtT* remove();
void removeNext(SkOpPtT* kept);
const SkOpSegment* segment() const;
SkOpSegment* segment();
void setDeleted() {
SkASSERT(!fDeleted);
fDeleted = true;
}
const SkOpSpanBase* span() const {
return fSpan;
}
SkOpSpanBase* span() {
return fSpan;
}
const SkOpPtT* starter(const SkOpPtT* end) const {
return fT < end->fT ? this : end;
}
double fT;
SkPoint fPt; // cache of point value at this t
protected:
SkOpSpanBase* fSpan; // contains winding data
SkOpPtT* fNext; // intersection on opposite curve or alias on this curve
bool fDeleted; // set if removed from span list
bool fDuplicatePt; // set if identical pt is somewhere in the next loop
SkDEBUGCODE(int fID);
};
class SkOpSpanBase {
public:
void align();
bool aligned() const {
return fAligned;
}
void alignEnd(double t, const SkPoint& pt);
void bumpSpanAdds() {
++fSpanAdds;
}
bool chased() const {
return fChased;
}
void clearCoinEnd() {
SkASSERT(fCoinEnd != this);
fCoinEnd = this;
}
const SkOpSpanBase* coinEnd() const {
return fCoinEnd;
}
bool contains(const SkOpSpanBase* ) const;
SkOpPtT* contains(const SkOpSegment* );
bool containsCoinEnd(const SkOpSpanBase* coin) const {
SkASSERT(this != coin);
const SkOpSpanBase* next = this;
while ((next = next->fCoinEnd) != this) {
if (next == coin) {
return true;
}
}
return false;
}
bool containsCoinEnd(const SkOpSegment* ) const;
SkOpContour* contour() const;
int debugBumpCount() {
return SkDEBUGRELEASE(++fCount, -1);
}
int debugID() const {
return SkDEBUGRELEASE(fID, -1);
}
const SkOpAngle* debugAngle(int id) const;
bool debugCoinEndLoopCheck() const;
SkOpContour* debugContour(int id);
const SkOpPtT* debugPtT(int id) const;
const SkOpSegment* debugSegment(int id) const;
const SkOpSpanBase* debugSpan(int id) const;
SkOpGlobalState* globalState() const;
void debugValidate() const;
bool deleted() const {
return fPtT.deleted();
}
void dump() const; // available to testing only
void dumpCoin() const;
void dumpAll() const;
void dumpBase() const;
bool final() const {
return fPtT.fT == 1;
}
SkOpAngle* fromAngle() const {
return fFromAngle;
}
void initBase(SkOpSegment* parent, SkOpSpan* prev, double t, const SkPoint& pt);
void insertCoinEnd(SkOpSpanBase* coin) {
if (containsCoinEnd(coin)) {
SkASSERT(coin->containsCoinEnd(this));
return;
}
debugValidate();
SkASSERT(this != coin);
SkOpSpanBase* coinNext = coin->fCoinEnd;
coin->fCoinEnd = this->fCoinEnd;
this->fCoinEnd = coinNext;
debugValidate();
}
void merge(SkOpSpan* span);
SkOpSpan* prev() const {
return fPrev;
}
const SkPoint& pt() const {
return fPtT.fPt;
}
const SkOpPtT* ptT() const {
return &fPtT;
}
SkOpPtT* ptT() {
return &fPtT;
}
SkOpSegment* segment() const {
return fSegment;
}
void setAligned() {
fAligned = true;
}
void setChased(bool chased) {
fChased = chased;
}
SkOpPtT* setCoinEnd(SkOpSpanBase* oldCoinEnd, SkOpSegment* oppSegment);
void setFromAngle(SkOpAngle* angle) {
fFromAngle = angle;
}
void setPrev(SkOpSpan* prev) {
fPrev = prev;
}
bool simple() const {
fPtT.debugValidate();
return fPtT.next()->next() == &fPtT;
}
int spanAddsCount() const {
return fSpanAdds;
}
const SkOpSpan* starter(const SkOpSpanBase* end) const {
const SkOpSpanBase* result = t() < end->t() ? this : end;
return result->upCast();
}
SkOpSpan* starter(SkOpSpanBase* end) {
SkASSERT(this->segment() == end->segment());
SkOpSpanBase* result = t() < end->t() ? this : end;
return result->upCast();
}
SkOpSpan* starter(SkOpSpanBase** endPtr) {
SkOpSpanBase* end = *endPtr;
SkASSERT(this->segment() == end->segment());
SkOpSpanBase* result;
if (t() < end->t()) {
result = this;
} else {
result = end;
*endPtr = this;
}
return result->upCast();
}
int step(const SkOpSpanBase* end) const {
return t() < end->t() ? 1 : -1;
}
double t() const {
return fPtT.fT;
}
void unaligned() {
fAligned = false;
}
SkOpSpan* upCast() {
SkASSERT(!final());
return (SkOpSpan*) this;
}
const SkOpSpan* upCast() const {
SkASSERT(!final());
return (const SkOpSpan*) this;
}
SkOpSpan* upCastable() {
return final() ? nullptr : upCast();
}
const SkOpSpan* upCastable() const {
return final() ? nullptr : upCast();
}
private:
void alignInner();
protected: // no direct access to internals to avoid treating a span base as a span
SkOpPtT fPtT; // list of points and t values associated with the start of this span
SkOpSegment* fSegment; // segment that contains this span
SkOpSpanBase* fCoinEnd; // linked list of coincident spans that end here (may point to itself)
SkOpAngle* fFromAngle; // points to next angle from span start to end
SkOpSpan* fPrev; // previous intersection point
int fSpanAdds; // number of times intersections have been added to span
bool fAligned;
bool fChased; // set after span has been added to chase array
SkDEBUGCODE(int fCount); // number of pt/t pairs added
SkDEBUGCODE(int fID);
};
class SkOpSpan : public SkOpSpanBase {
public:
bool clearCoincident() {
SkASSERT(!final());
if (fCoincident == this) {
return false;
}
fCoincident = this;
return true;
}
int computeWindSum();
bool containsCoincidence(const SkOpSegment* ) const;
bool containsCoincidence(const SkOpSpan* coin) const {
SkASSERT(this != coin);
const SkOpSpan* next = this;
while ((next = next->fCoincident) != this) {
if (next == coin) {
return true;
}
}
return false;
}
bool debugCoinLoopCheck() const;
void detach(SkOpPtT* );
bool done() const {
SkASSERT(!final());
return fDone;
}
void dumpCoin() const;
bool dumpSpan() const;
void init(SkOpSegment* parent, SkOpSpan* prev, double t, const SkPoint& pt);
void insertCoincidence(SkOpSpan* coin) {
if (containsCoincidence(coin)) {
SkASSERT(coin->containsCoincidence(this));
return;
}
debugValidate();
SkASSERT(this != coin);
SkOpSpan* coinNext = coin->fCoincident;
coin->fCoincident = this->fCoincident;
this->fCoincident = coinNext;
debugValidate();
}
bool isCanceled() const {
SkASSERT(!final());
return fWindValue == 0 && fOppValue == 0;
}
bool isCoincident() const {
SkASSERT(!final());
return fCoincident != this;
}
SkOpSpanBase* next() const {
SkASSERT(!final());
return fNext;
}
int oppSum() const {
SkASSERT(!final());
return fOppSum;
}
int oppValue() const {
SkASSERT(!final());
return fOppValue;
}
SkOpPtT* setCoinStart(SkOpSpan* oldCoinStart, SkOpSegment* oppSegment);
void setDone(bool done) {
SkASSERT(!final());
fDone = done;
}
void setNext(SkOpSpanBase* nextT) {
SkASSERT(!final());
fNext = nextT;
}
void setOppSum(int oppSum);
void setOppValue(int oppValue) {
SkASSERT(!final());
SkASSERT(fOppSum == SK_MinS32);
fOppValue = oppValue;
}
void setToAngle(SkOpAngle* angle) {
SkASSERT(!final());
fToAngle = angle;
}
void setWindSum(int windSum);
void setWindValue(int windValue) {
SkASSERT(!final());
SkASSERT(windValue >= 0);
SkASSERT(fWindSum == SK_MinS32);
fWindValue = windValue;
}
bool sortableTop(SkOpContour* );
SkOpAngle* toAngle() const {
SkASSERT(!final());
return fToAngle;
}
int windSum() const {
SkASSERT(!final());
return fWindSum;
}
int windValue() const {
SkASSERT(!final());
return fWindValue;
}
private: // no direct access to internals to avoid treating a span base as a span
SkOpSpan* fCoincident; // linked list of spans coincident with this one (may point to itself)
SkOpAngle* fToAngle; // points to next angle from span start to end
SkOpSpanBase* fNext; // next intersection point
int fWindSum; // accumulated from contours surrounding this one.
int fOppSum; // for binary operators: the opposite winding sum
int fWindValue; // 0 == canceled; 1 == normal; >1 == coincident
int fOppValue; // normally 0 -- when binary coincident edges combine, opp value goes here
int fTopTTry; // specifies direction and t value to try next
bool fDone; // if set, this span to next higher T has been processed
};
#endif
|